Citations for Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018)

Legends: Link to a Model Reference cited by multiple papers

Knowlton C, Kutterer S, Roeper J, Canavier CC (2018) Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. J Neurophysiol 119:84-95 [PubMed]

References and models cited by this paper

References and models that cite this paper

Ainscow EK, Mirshamsi S, Tang T, Ashford ML, Rutter GA (2002) Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol 544:429-45 [PubMed]
Aittoniemi J, Fotinou C, Craig TJ, de Wet H, Proks P, Ashcroft FM (2009) Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos Trans R Soc Lond B Biol Sci 364:257-67 [Journal] [PubMed]
Amini B, Clark JW, Canavier CC (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249-61 [Journal] [PubMed]
Ashcroft FM, Gribble FM (2000) New windows on the mechanism of action of K(ATP) channel openers. Trends Pharmacol Sci 21:439-45 [PubMed]
Bean BP (2007) Neurophysiology: stressful pacemaking. Nature 447:1059-60 [Journal] [PubMed]
Berridge KC (2007) The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl) 191:391-431 [Journal] [PubMed]
Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815-34 [Journal] [PubMed]
Burke MA, Mutharasan RK, Ardehali H (2008) The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel. Circ Res 102:164-76 [Journal] [PubMed]
Butera RJ (1998) Multirhythmic bursting. Chaos 8:274-284 [Journal] [PubMed]
Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49-69 [PubMed]
   Midbrain dopamine neuron: firing patterns (Canavier 1999) [Model]
Canavier CC, Baxter DA, Clark JW, Byrne JH (1993) Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J Neurophysiol 69:2252-7 [Journal] [PubMed]
Canavier CC, Baxter DA, Clark JW, Byrne JH (1994) Multiple modes of activity in a model neuron suggest a novel mechanism for the effects of neuromodulators. J Neurophysiol 72:872-82 [Journal] [PubMed]
Canavier CC, Clark JW, Byrne JH (1990) Routes to chaos in a model of a bursting neuron. Biophys J 57:1245-51 [Journal] [PubMed]
Canavier CC, Evans RC, Oster AM, Pissadaki EK, Drion G, Kuznetsov AS, Gutkin BS (2016) Implications of cellular models of dopamine neurons for disease. J Neurophysiol 116:2815-2830 [Journal] [PubMed]
Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549-63 [Journal] [PubMed]
   Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006) [Model]
Dabrowski M, Larsen T, Ashcroft FM, Bondo Hansen J, Wahl P (2003) Potent and selective activation of the pancreatic beta-cell type K(ATP) channel by two novel diazoxide analogues. Diabetologia 46:1375-82 [Journal] [PubMed]
Dragicevic E, Poetschke C, Duda J, Schlaudraff F, Lammel S, Schiemann J, Fauler M, Hetzel A, Watanabe M, Lujan R, Malenka RC, Striessnig J, Liss B (2014) Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain 137:2287-302 [Journal] [PubMed]
Drion G, Bonjean M, Waroux O, Scuvée-Moreau J, Liégeois JF, Sejnowski TJ, Sepulchre R, Seutin V (2010) M-type channels selectively control bursting in rat dopaminergic neurons. Eur J Neurosci 31:827-35 [Journal] [PubMed]
Drion G, Massotte L, Sepulchre R, Seutin V (2011) How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput Biol 7:e1002050 [Journal] [PubMed]
Evans RC, Zhu M, Khaliq ZM (2017) Dopamine Inhibition Differentially Controls Excitability of Substantia Nigra Dopamine Neuron Subpopulations through T-Type Calcium Channels. J Neurosci 37:3704-3720 [Journal] [PubMed]
Foehring RC, Zhang XF, Lee JC, Callaway JC (2009) Endogenous calcium buffering capacity of substantia nigral dopamine neurons. J Neurophysiol 102:2326-33 [Journal] [PubMed]
Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR, Goldberg JH (2016) Dopamine neurons encode performance error in singing birds. Science 354:1278-1282 [Journal] [PubMed]
German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann N Y Acad Sci 648:42-62 [PubMed]
Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463-81 [PubMed]
Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369-82 [PubMed]
Haller M, Mironov SL, Karschin A, Richter DW (2001) Dynamic activation of K(ATP) channels in rhythmically active neurons. J Physiol 537:69-81 [PubMed]
Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson's disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136:2077-97 [Journal] [PubMed]
Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475-92 [PubMed]
Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD (2012) Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons - implications for a role in depolarization block. Eur J Neurosci 36:2906-16 [Journal] [PubMed]
Jin X, Costa RM (2010) Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466:457-62 [Journal] [PubMed]
Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665-7 [PubMed]
Kanno T, Rorsman P, Gopel SO (2002) Glucose-dependent regulation of rhythmic action potential firing in pancreatic beta-cells by K(ATP)-channel modulation. J Physiol 545:501-7
Liang CL, Sinton CM, Sonsalla PK, German DC (1996) Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration 5:313-8 [PubMed]
Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742-51 [Journal] [PubMed]
Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A 95:10402-6 [PubMed]
Okamura H, Yokoyama C, Ibata Y (1995) Lateromedial gradient of the susceptibility of midbrain dopaminergic neurons to neonatal 6-hydroxydopamine toxicity. Exp Neurol 136:136-42 [Journal] [PubMed]
Ortner NJ, Striessnig J (2016) L-type calcium channels as drug targets in CNS disorders. Channels (Austin) 10:7-13 [Journal] [PubMed]
Proks P, Ashcroft FM (2009) Modeling K(ATP) channel gating and its regulation. Prog Biophys Mol Biol 99:7-19 [Journal] [PubMed]
Proks P, de Wet H, Ashcroft FM (2010) Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1. J Gen Physiol 136:389-405 [Journal] [PubMed]
Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645-56 [Journal] [PubMed]
Rodríguez M, Barroso-Chinea P, Abdala P, Obeso J, González-Hernández T (2001) Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in parkinson's disease. Exp Neurol 169:163-81 [Journal] [PubMed]
Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36:336-42 [Journal] [PubMed]
Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, Zaghloul KA, Schneider G, Liss B, Roeper J (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 15:1272-80 [Journal] [PubMed]
Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27 [Journal] [PubMed]
Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259-88 [Journal] [PubMed]
Seutin V, Johnson SW, North RA (1993) Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons. Brain Res 630:341-4 [PubMed]
Shen KZ, Johnson SW (2010) Ca2+ influx through NMDA-gated channels activates ATP-sensitive K+ currents through a nitric oxide-cGMP pathway in subthalamic neurons. J Neurosci 30:1882-93 [Journal] [PubMed]
Somers D, Kopell N (1993) Rapid synchronization through fast threshold modulation. Biol Cybern 68:393-407 [PubMed]
Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT (2012) Physiological phenotype and vulnerability in Parkinson's disease. Cold Spring Harb Perspect Med 2:a009290 [Journal] [PubMed]
Surmeier DJ, Guzman JN, Sanchez-Padilla J (2010) Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 47:175-82 [Journal] [PubMed]
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA (2011) The origins of oxidant stress in Parkinson's disease and therapeutic strategies. Antioxid Redox Signal 14:1289-301 [Journal] [PubMed]
Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E (2017) Calcium and Parkinson's disease. Biochem Biophys Res Commun 483:1013-1019 [Journal] [PubMed]
Tanner GR, Lutas A, Martínez-François JR, Yellen G (2011) Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons. J Neurosci 31:8689-96 [Journal] [PubMed]
Tantama M, Martínez-François JR, Mongeon R, Yellen G (2013) Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat Commun 4:2550 [Journal] [PubMed]
Van der Pol B (1926) On "relaxation-oscillations" Lond Edinb Dubl Philos Mag J Sci 2:978-992 [Journal]
Vedovato N, Ashcroft FM, Puljung MC (2015) The Nucleotide-Binding Sites of SUR1: A Mechanistic Model. Biophys J 109:2452-2460 [Journal] [PubMed]
Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [Journal] [PubMed]
   Dendritica (Vetter et al 2001) [Model]
Watts M, Tabak J, Bertram R (2011) Mathematical modeling demonstrates how multiple slow processes can provide adjustable control of islet bursting. Islets 3:320-6 [Journal] [PubMed]
Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084-100 [Journal] [PubMed]
Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303-7 [PubMed]
Yi H, Bao X, Tang X, Fan X, Xu H (2016) Estrogen modulation of calretinin and BDNF expression in midbrain dopaminergic neurons of ovariectomised mice. J Chem Neuroanat 77:60-67 [Journal] [PubMed]
Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464-76 [Journal] [PubMed]
Yu N, Canavier CC (2015) A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. J Math Neurosci 5:5 [Journal] [PubMed]
   Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015) [Model]
Yu N, Tucker KR, Levitan ES, Shepard PD, Canavier CC (2014) Implications of cellular models of dopamine neurons for schizophrenia. Prog Mol Biol Transl Sci 123:53-82 [Journal] [PubMed]
(66 refs)