Citations for Spinal circuits controlling limb coordination and gaits in quadrupeds (Danner et al 2017)

Legends: Link to a Model Reference cited by multiple papers


Danner SM, Shevtsova NA, Frigon A, Rybak IA (2017) Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. Elife [PubMed]

References and models cited by this paper

References and models that cite this paper

Ahnert K,Mulansky M,Simos TE,Psihoyios G,Tsitouras C,Anastassi Z (2011) Odeint – solving ordinary differential equations in C++ AIP Conference Proceedings 1389:1586-89 [Journal]
Alexander RMN,Jayes AS (1983) A dynamic similarity hypothesis for the gaits of quadrupedal mammals Journal of Zoology 201(1):135-52 [Journal]
Alstermark B, Lundberg A, Pinter M, Sasaki S (1987) Subpopulations and functions of long C3-C5 propriospinal neurones. Brain Res 404:395-400 [PubMed]
Atsuta Y, Garcia-Rill E, Skinner RD (1990) Characteristics of electrically induced locomotion in rat in vitro brain stem-spinal cord preparation. J Neurophysiol 64:727-35 [Journal] [PubMed]
Ausborn J, Snyder AC, Shevtsova NA, Rybak IA, Rubin JE (2018) State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. J Neurophysiol 119:96-117 [Journal] [PubMed]
   State-dependent rhythmogenesis in a half-center locomotor CPG (Ausborn et al 2017) [Model]
Ballion B, Morin D, Viala D (2001) Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat. Eur J Neurosci 14:1727-38 [PubMed]
Bannatyne BA, Edgley SA, Hammar I, Jankowska E, Maxwell DJ (2003) Networks of inhibitory and excitatory commissural interneurons mediating crossed reticulospinal actions. Eur J Neurosci 18:2273-84 [PubMed]
Bannatyne BA, Edgley SA, Hammar I, Jankowska E, Maxwell DJ (2006) Differential projections of excitatory and inhibitory dorsal horn interneurons relaying information from group II muscle afferents in the cat spinal cord. J Neurosci 26:2871-80 [Journal] [PubMed]
Bellardita C, Kiehn O (2015) Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Curr Biol 25:1426-36 [Journal] [PubMed]
Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250:1097-103 [PubMed]
Bouyer LJ, Rossignol S (2003) Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. J Neurophysiol 90:3640-53 [Journal] [PubMed]
Britz O, Zhang J, Grossmann KS, Dyck J, Kim JC, Dymecki S, Gosgnach S, Goulding M (2015) A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. Elife [Journal] [PubMed]
Brockett EG, Seenan PG, Bannatyne BA, Maxwell DJ (2013) Ascending and descending propriospinal pathways between lumbar and cervical segments in the rat: evidence for a substantial ascending excitatory pathway. Neuroscience 240:83-97 [Journal] [PubMed]
Clarke KA, Still J (1999) Gait analysis in the mouse. Physiol Behav 66:723-9 [PubMed]
Cowley KC, Zaporozhets E, Schmidt BJ (2008) Propriospinal neurons are sufficient for bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord. J Physiol 586:1623-35 [Journal] [PubMed]
Cowley KC, Zaporozhets E, Schmidt BJ (2010) Propriospinal transmission of the locomotor command signal in the neonatal rat. Ann N Y Acad Sci 1198:42-53 [Journal] [PubMed]
Crone SA, Quinlan KA, Zagoraiou L, Droho S, Restrepo CE, Lundfald L, Endo T, Setlak J, Jessell TM, Kiehn O, Sharma K (2008) Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60:70-83 [Journal] [PubMed]
Crone SA, Zhong G, Harris-Warrick R, Sharma K (2009) In mice lacking V2a interneurons, gait depends on speed of locomotion. J Neurosci 29:7098-109 [Journal] [PubMed]
Danner SM, Hofstoetter US, Freundl B, Binder H, Mayr W, Rattay F, Minassian K (2015) Human spinal locomotor control is based on flexibly organized burst generators. Brain 138:577-88 [Journal] [PubMed]
Danner SM, Wilshin SD, Shevtsova NA, Rybak IA (2016) Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. J Physiol 594:6947-6967 [Journal] [PubMed]
Dietz V, Duysens J (2000) Significance of load receptor input during locomotion: a review. Gait Posture 11:102-10 [PubMed]
Dutton RC, Carstens MI, Antognini JF, Carstens E (2006) Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat. Brain Res 1119:76-85 [Journal] [PubMed]
Duysens J (1977) Reflex control of locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats. J Neurophysiol 40:737-51 [Journal] [PubMed]
Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7:14 [Journal] [PubMed]
Edgley SA, Jankowska E, Krutki P, Hammar I (2003) Both dorsal horn and lamina VIII interneurones contribute to crossed reflexes from feline group II muscle afferents. J Physiol 552:961-74 [Journal] [PubMed]
Edinger L (1896) Vorlesungen u¨ber den Bau der nervösen Centralorgane des Menschen und der Thiere. 5 ed
Ermentrout GB (1994) Reduction of conductance based models with slow synapses to neural networks. Neural Computation 6:679-695
Farley CT, Taylor CR (1991) A mechanical trigger for the trot-gallop transition in horses. Science 253:306-8 [PubMed]
Flynn JR, Conn VL, Boyle KA, Hughes DI, Watanabe M, Velasquez T, Goulding MD, Callister RJ, Graham BA (2017) Anatomical and Molecular Properties of Long Descending Propriospinal Neurons in Mice. Front Neuroanat 11:5 [Journal] [PubMed]
Forssberg H, Grillner S, Halbertsma J, Rossignol S (1980) The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol Scand 108:283-95 [Journal] [PubMed]
Frigon A (2017) The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 117:2224-2241 [Journal] [PubMed]
Frigon A, Gossard JP (2009) Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat. J Physiol 587:4617-28 [Journal] [PubMed]
Frigon A, Hurteau MF, Thibaudier Y, Leblond H, Telonio A, D'Angelo G (2013) Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats. J Neurosci 33:8559-66 [Journal] [PubMed]
Frigon A, Thibaudier Y, Hurteau MF (2015) Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats. Neuroscience 290:266-78 [Journal] [PubMed]
Fukuoka Y, Habu Y, Fukui T (2015) A simple rule for quadrupedal gait generation determined by leg loading feedback: a modeling study. Sci Rep 5:8169 [Journal] [PubMed]
Golubitsky M, Stewart I, Buono PL, Collins JJ (1999) Symmetry in locomotor central pattern generators and animal gaits. Nature 401:693-5 [Journal] [PubMed]
Grillner S (1981) Control of locomotion in bipeds, tetrapods and fish. Handbook of Physiology, section 1, The Nervous system, vol II, Maryland VB, ed. pp.1179
Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143-9 [PubMed]
Hägglund M, Dougherty KJ, Borgius L, Itohara S, Iwasato T, Kiehn O (2013) Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci U S A 110:11589-94 [Journal] [PubMed]
Heglund NC, Taylor CR (1988) Speed, stride frequency and energy cost per stride: how do they change with body size and gait? J Exp Biol 138:301-18 [PubMed]
Herbin M, Gasc JP, Renous S (2004) Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:895-906 [Journal] [PubMed]
Herbin M, Hackert R, Gasc JP, Renous S (2007) Gait parameters of treadmill versus overground locomotion in mouse. Behav Brain Res 181:173-9 [Journal] [PubMed]
Hiebert GW, Pearson KG (1999) Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat. J Neurophysiol 81:758-70 [Journal] [PubMed]
Hoyt DF,Taylor CR (1981) Gait and the energetics of locomotion in horses Nature 292(5820):239-240 [Journal]
Jankowska E (2008) Spinal interneuronal networks in the cat: elementary components. Brain Res Rev 57:46-55 [Journal] [PubMed]
Jankowska E, Bannatyne BA, Stecina K, Hammar I, Cabaj A, Maxwell DJ (2009) Commissural interneurons with input from group I and II muscle afferents in feline lumbar segments: neurotransmitters, projections and target cells. J Physiol 587:401-18 [Journal] [PubMed]
Jankowska E, Edgley SA, Krutki P, Hammar I (2005) Functional differentiation and organization of feline midlumbar commissural interneurones. J Physiol 565:645-58 [Journal] [PubMed]
Jankowska E, Hammar I, Slawinska U, Maleszak K, Edgley SA (2003) Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons. J Neurosci 23:1867-78 [PubMed]
Jankowska E, Stecina K, Cabaj A, Pettersson LG, Edgley SA (2006) Neuronal relays in double crossed pathways between feline motor cortex and ipsilateral hindlimb motoneurones. J Physiol 575:527-41 [Journal] [PubMed]
Juvin L, Le Gal JP, Simmers J, Morin D (2012) Cervicolumbar coordination in mammalian quadrupedal locomotion: role of spinal thoracic circuitry and limb sensory inputs. J Neurosci 32:953-65 [Journal] [PubMed]
Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25:6025-35 [Journal] [PubMed]
Kato M (1989) Chronically isolated lumbar half spinal cord, produced by hemisection and longitudinal myelotomy, generates locomotor activities of the ipsilateral hindlimb of the cat. Neurosci Lett 98:149-53 [PubMed]
Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17:224-38 [Journal] [PubMed]
Lafreniere-Roula M, McCrea DA (2005) Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J Neurophysiol 94:1120-32 [Journal] [PubMed]
Lemieux M, Josset N, Roussel M, Couraud S, Bretzner F (2016) Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits. Front Neurosci 10:42 [Journal] [PubMed]
LLOYD DP, MciNTYRE AK (1948) Analysis of forelimb-hindlimb reflex activity in acutely decapitate cats. J Neurophysiol 11:455-70 [Journal] [PubMed]
Lloyd DPC (1942) Mediation of descending long spinal reflex activity Journal of Neurophysiology 5(6):435-58
Machado TA, Pnevmatikakis E, Paninski L, Jessell TM, Miri A (2015) Primacy of Flexor Locomotor Pattern Revealed by Ancestral Reversion of Motor Neuron Identity. Cell 162:338-350 [Journal] [PubMed]
Matsushita M, Ikeda M, Hosoya Y (1979) The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique. J Comp Neurol 184:63-80 [Journal] [PubMed]
Matsuyama K, Nakajima K, Mori F, Aoki M, Mori S (2004) Lumbar commissural interneurons with reticulospinal inputs in the cat: morphology and discharge patterns during fictive locomotion. J Comp Neurol 474:546-61 [Journal] [PubMed]
McCrea DA, Rybak IA (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog Brain Res 165:235-53 [Journal] [PubMed]
McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM, Hines ML (2017) Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci 42:1-10 [Journal] [PubMed]
Menétrey D, de Pommery J, Roudier F (1985) Propriospinal fibers reaching the lumbar enlargement in the rat. Neurosci Lett 58:257-61 [PubMed]
Mitchell EJ, McCallum S, Dewar D, Maxwell DJ (2016) Corticospinal and Reticulospinal Contacts on Cervical Commissural and Long Descending Propriospinal Neurons in the Adult Rat Spinal Cord; Evidence for Powerful Reticulospinal Connections. PLoS One 11:e0152094 [Journal] [PubMed]
Molkov YI, Bacak BJ, Talpalar AE, Rybak IA (2015) Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view. PLoS Comput Biol 11:e1004270 [Journal] [PubMed]
Nathan PW, Smith M, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119 ( Pt 6):1809-33 [PubMed]
NATHAN PW, SMITH MC (1959) Fasciculi proprii of the spinal cord in man. Brain 82:610-68 [PubMed]
Nicolopoulos-Stournaras S,Iles JF (2009) Hindlimb muscle activity during locomotion in the rat (Rattus norvegicus) (Rodentia: Muridae) Journal of Zoology 203(3):427-40 [Journal]
Orlovskii GN, Severin FV, Shik ML (1966) [Locomotion induced by stimulation of the mesencephalon]. Dokl Akad Nauk SSSR 169:1223-6 [PubMed]
Patrick SK, Noah JA, Yang JF (2009) Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds. J Neurophysiol 101:603-13 [Journal] [PubMed]
Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5:786-91 [PubMed]
Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123-9 [Journal] [PubMed]
Pearson KG, Duysens J (1976) Function of segmental reflexes in the control of stepping in cockroaches and cats, Herman RM:Grillner S:Stein PSG:Stuart DG, ed. pp.519 [Journal]
Righetti L, Nylén A, Rosander K, Ijspeert AJ (2015) Kinematic and Gait Similarities between Crawling Human Infants and Other Quadruped Mammals. Front Neurol 6:17 [Journal] [PubMed]
Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89-154 [Journal] [PubMed]
Thibaudier Y, Hurteau MF, Telonio A, Frigon A (2013) Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat. Neuroscience 240:13-26 [Journal] [PubMed]
Trank TV, Chen C, Smith JL (1996) Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking. J Neurophysiol 76:2316-26 [Journal] [PubMed]
Zaporozhets E, Cowley KC, Schmidt BJ (2011) Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord. J Neurophysiol 105:2818-29 [Journal] [PubMed]
Zhang J, Lanuza GM, Britz O, Wang Z, Siembab VC, Zhang Y, Velasquez T, Alvarez FJ, Frank E, Goulding M (2014) V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82:138-50 [Journal] [PubMed]
Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 590:4735-59 [Journal] [PubMed]
Ausborn J, Snyder AC, Shevtsova NA, Rybak IA, Rubin JE (2018) State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. J Neurophysiol 119:96-117 [Journal] [PubMed]
   State-dependent rhythmogenesis in a half-center locomotor CPG (Ausborn et al 2017) [Model]
Wittman S, Abdala AP, Rubin JE (2019) Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome. J Physiol 597:2651-2672 [Journal] [PubMed]
   Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019) [Model]
(83 refs)