Citations for State-dependent rhythmogenesis in a half-center locomotor CPG (Ausburn et al 2017)

Legends: Link to a Model Reference cited by multiple papers


Ausborn J, Snyder AC, Shevtsova NA, Rybak IA, Rubin JE (2018) State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. J Neurophysiol 119:96-117 [PubMed]

References and models cited by this paper

References and models that cite this paper

Armstrong DM (1988) The supraspinal control of mammalian locomotion. J Physiol 405:1-37 [PubMed]
Atsuta Y, Garcia-Rill E, Skinner RD (1990) Characteristics of electrically induced locomotion in rat in vitro brain stem-spinal cord preparation. J Neurophysiol 64:727-35 [Journal] [PubMed]
Barrière G, Frigon A, Leblond H, Provencher J, Rossignol S (2010) Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern. J Neurophysiol 104:1119-33 [Journal] [PubMed]
Best J, Borisyuk A, Rubin J, Terman D, Wechselberger M (2005) The dynamic range of bursting in a model respiratory pacemaker network Siam J App Dyn Sys 4:1107-1139
Britz O, Zhang J, Grossmann KS, Dyck J, Kim JC, Dymecki S, Gosgnach S, Goulding M (2015) A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. Elife [Journal] [PubMed]
Brocard F, Shevtsova NA, Bouhadfane M, Tazerart S, Heinemann U, Rybak IA, Vinay L (2013) Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 77:1047-54 [Journal] [PubMed]
Brocard F, Tazerart S, Vinay L (2010) Do pacemakers drive the central pattern generator for locomotion in mammals? Neuroscientist 16:139-55 [Journal] [PubMed]
Brown TG (1914) On the nature of the fundamental activity of the nervous centres, together with an analysis of the conditioning of rhythmic activity in progression, and a theory of evolution of function in the nervous system J Physiol 48:18-46
Burke RE, Degtyarenko AM, Simon ES (2001) Patterns of locomotor drive to motoneurons and last-order interneurons: clues to the structure of the CPG. J Neurophysiol 86:447-62 [Journal] [PubMed]
Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382-97 [Journal] [PubMed]
   Respiratory pacemaker neurons (Butera et al 1999) [Model]
Butera RJ, Terman D, Rubin J, Smith JC (2005) Oscillatory bursting mechanisms in respiratory pacemaker neurons and networks Bursting: The Genesis of Rhythm in the Nervous System, Coombes S:Bresloff PC, ed. pp.303
Danner SM, Shevtsova NA, Frigon A, Rybak IA (2017) Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. Elife [Journal] [PubMed]
   Spinal circuits controlling limb coordination and gaits in quadrupeds (Danner et al 2017) [Model]
Danner SM, Wilshin SD, Shevtsova NA, Rybak IA (2016) Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. J Physiol 594:6947-6967 [Journal] [PubMed]
Daun S, Rubin JE, Rybak IA (2009) Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. J Comput Neurosci 27:3-36 [Journal] [PubMed]
Dougherty KJ, Zagoraiou L, Satoh D, Rozani I, Doobar S, Arber S, Jessell TM, Kiehn O (2013) Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 80:920-33 [Journal] [PubMed]
Duysens J (2006) How deletions in a model could help explain deletions in the laboratory. J Neurophysiol 95:562-3; author reply 563-5 [Journal] [PubMed]
Duysens J, De Groote F, Jonkers I (2013) The flexion synergy, mother of all synergies and father of new models of gait. Front Comput Neurosci 7:14 [Journal] [PubMed]
Ermentrout GB (1994) Reduction of conductance based models with slow synapses to neural networks. Neural Computation 6:679-695
Ermentrout GB (2002) Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM)
Frigon A (2012) Central pattern generators of the mammalian spinal cord. Neuroscientist 18:56-69 [Journal] [PubMed]
Frigon A, Gossard JP (2009) Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat. J Physiol 587:4617-28 [Journal] [PubMed]
Frigon A, Hurteau MF, Thibaudier Y, Leblond H, Telonio A, D'Angelo G (2013) Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats. J Neurosci 33:8559-66 [Journal] [PubMed]
Gossard JP, Dubuc R, Kolta A (2011) Preface. Breathe, walk and chew: the neural challenge: part II. Prog Brain Res 188:ix [Journal] [PubMed]
Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143-9 [PubMed]
Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751-66 [Journal] [PubMed]
Hägglund M, Dougherty KJ, Borgius L, Itohara S, Iwasato T, Kiehn O (2013) Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci U S A 110:11589-94 [Journal] [PubMed]
Halbertsma JM (1983) The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol Scand Suppl 521:1-75 [PubMed]
Jankowska E, Jukes MG, Lund S, Lundberg A (1967) The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389-402 [Journal] [PubMed]
Jankowska E, Jukes MG, Lund S, Lundberg A (1967) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70:369-88 [Journal] [PubMed]
Jasinski PE, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2013) Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modelling study. Eur J Neurosci 37:212-30 [Journal] [PubMed]
Juvin L, Simmers J, Morin D (2007) Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators. J Physiol 583:115-28 [Journal] [PubMed]
Kriellaars DJ, Brownstone RM, Noga BR, Jordan LM (1994) Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol 71:2074-86 [Journal] [PubMed]
Lafreniere-Roula M, McCrea DA (2005) Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J Neurophysiol 94:1120-32 [Journal] [PubMed]
Lundberg A (1981) Half-centres revisited.Regulatory Functions of the CNS: Principles of Motion and Organization, Szentágothai J:Palkovits M:Hámori J, ed. pp.155
Machado TA, Pnevmatikakis E, Paninski L, Jessell TM, Miri A (2015) Primacy of Flexor Locomotor Pattern Revealed by Ancestral Reversion of Motor Neuron Identity. Cell 162:338-350 [Journal] [PubMed]
Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA (2010) Afferent control of locomotor CPG: insights from a simple neuromechanical model. Ann N Y Acad Sci 1198:21-34 [Journal] [PubMed]
McCrea DA, Rybak IA (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog Brain Res 165:235-53 [Journal] [PubMed]
McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134-46 [Journal] [PubMed]
Molkov YI, Bacak BJ, Talpalar AE, Rybak IA (2015) Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view. PLoS Comput Biol 11:e1004270 [Journal] [PubMed]
Musselman KE, Yang JF (2007) Loading the limb during rhythmic leg movements lengthens the duration of both flexion and extension in human infants. J Neurophysiol 97:1247-57 [Journal] [PubMed]
Orlovskii GN, Severin FV, Shik ML (1966) [Locomotion induced by stimulation of the mesencephalon]. Dokl Akad Nauk SSSR 169:1223-6 [PubMed]
Pearson (1976) Function of segmental reflexes in the control of stepping in cockroaches and cats Neural Control of Locomotion, Herman RM:Grillner S:Stein PSG:Stuart DG, ed. pp.519 [Journal]
Rubin J,Terman D (2002) Synchronized activity and loss of synchrony among heterogeneous conditional oscillators SIAM J Appl Dyn Syst 1:146-174 [Journal]
Rybak IA, Dougherty KJ, Shevtsova NA (2015) Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons(1,2,3). eNeuro [Journal] [PubMed]
Rybak IA, Molkov YI, Jasinski PE, Shevtsova NA, Smith JC (2014) Rhythmic bursting in the pre-Bötzinger complex: mechanisms and models. Prog Brain Res 209:1-23 [Journal] [PubMed]
Rybak IA, Shevtsova NA, Kiehn O (2013) Modelling genetic reorganization in the mouse spinal cord affecting left-right coordination during locomotion. J Physiol 591:5491-508 [Journal] [PubMed]
Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617-39 [Journal] [PubMed]
Rybak IA, Shevtsova NA, Ptak K, McCrimmon DR (2004) Intrinsic bursting activity in the pre-Bötzinger complex: role of persistent sodium and potassium currents. Biol Cybern 90:59-74 [Journal] [PubMed]
Rybak IA, Shevtsova NA, St-John WM, Paton JF, Pierrefiche O (2003) Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies. Eur J Neurosci 18:239-57 [PubMed]
Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577:641-58 [Journal] [PubMed]
Sherwood WE, Harris-Warrick R, Guckenheimer J (2011) Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 30:323-60 [Journal] [PubMed]
Shevtsova NA, Rybak IA (2016) Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling. J Physiol 594:6117-6131 [Journal] [PubMed]
Shevtsova NA, Talpalar AE, Markin SN, Harris-Warrick RM, Kiehn O, Rybak IA (2015) Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling. J Physiol 593:2403-26 [Journal] [PubMed]
Shik ML, Severin FV, Orlovskii GN (1966) [Control of walking and running by means of electric stimulation of the midbrain]. Biofizika 11:659-66 [PubMed]
Shpiro A, Curtu R, Rinzel J, Rubin N (2007) Dynamical characteristics common to neuronal competition models. J Neurophysiol 97:462-73 [Journal] [PubMed]
Skinner FK, Turrigiano GG, Marder E (1993) Frequency and burst duration in oscillating neurons and two-cell networks. Biol Cybern 69:375-83 [PubMed]
Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385-9 [PubMed]
Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM (2000) Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir Physiol 122:131-47 [PubMed]
Sobinov A, Yakovenko S (2018) Model of a bilateral Brown-type central pattern generator for symmetric and asymmetric locomotion. J Neurophysiol 119:1071-1083 [Journal] [PubMed]
Stuart DG, Hultborn H (2008) Thomas Graham Brown (1882--1965), Anders Lundberg (1920-), and the neural control of stepping. Brain Res Rev 59:74-95 [Journal] [PubMed]
Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500:85-8 [Journal] [PubMed]
Tazerart S, Viemari JC, Darbon P, Vinay L, Brocard F (2007) Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. J Neurophysiol 98:613-28 [Journal] [PubMed]
Tazerart S, Vinay L, Brocard F (2008) The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 28:8577-89 [Journal] [PubMed]
Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons Neural Comput 4:84-97
Yakovenko S (2011) Chapter 10--a hierarchical perspective on rhythm generation for locomotor control. Prog Brain Res 188:151-66 [Journal] [PubMed]
Yakovenko S, McCrea DA, Stecina K, Prochazka A (2005) Control of locomotor cycle durations. J Neurophysiol 94:1057-65 [Journal] [PubMed]
Zhang J, Lanuza GM, Britz O, Wang Z, Siembab VC, Zhang Y, Velasquez T, Alvarez FJ, Frank E, Goulding M (2014) V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82:138-50 [Journal] [PubMed]
Zhong G, Masino MA, Harris-Warrick RM (2007) Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J Neurosci 27:4507-18 [Journal] [PubMed]
Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 590:4735-59 [Journal] [PubMed]
Ziskind-Conhaim L, Wu L, Wiesner EP (2008) Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord. J Neurophysiol 100:2254-64 [Journal] [PubMed]
Danner SM, Shevtsova NA, Frigon A, Rybak IA (2017) Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. Elife [Journal] [PubMed]
   Spinal circuits controlling limb coordination and gaits in quadrupeds (Danner et al 2017) [Model]
Rubin JE, Smith JC (2019) Robustness of respiratory rhythm generation across dynamic regimes. PLoS Comput Biol 15:e1006860 [Journal] [PubMed]
   Respiratory central pattern generator (mammalian brainstem) (Rubin & Smith 2019) [Model]
(72 refs)