Citations for Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)

Legends: Link to a Model Reference cited by multiple papers


Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A (2019) Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS Comput Biol 15:e1006298 [PubMed]

References and models cited by this paper

References and models that cite this paper

Aizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827-35 [PubMed]
Albus JS (1971) A theory of cerebellar function Math Biosci 10:25-61
Anzai M, Kitazawa H, Nagao S (2010) Effects of reversible pharmacological shutdown of cerebellar flocculus on the memory of long-term horizontal vestibulo-ocular reflex adaptation in monkeys. Neurosci Res 68:191-8 [Journal] [PubMed]
Arenz A, Silver RA, Schaefer AT, Margrie TW (2008) The contribution of single synapses to sensory representation in vivo. Science 321:977-80 [Journal] [PubMed]
Badura A, Clopath C, Schonewille M, De Zeeuw CI (2016) Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments. Sci Rep 6:36131 [Journal] [PubMed]
Bazzigaluppi P, De Gruijl JR, van der Giessen RS, Khosrovani S, De Zeeuw CI, de Jeu MT (2012) Olivary subthreshold oscillations and burst activity revisited. Front Neural Circuits 6:91 [Journal] [PubMed]
Belmeguenai A, Botta P, Weber JT, Carta M, De Ruiter M, De Zeeuw CI, Valenzuela CF, Hansel C (2008) Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse. J Neurophysiol 100:3167-74 [Journal] [PubMed]
Bengtsson F, Hesslow G (2006) Cerebellar control of the inferior olive. Cerebellum 5:7-14 [Journal] [PubMed]
Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM (2003) Cerebellar signatures of vestibulo-ocular reflex motor learning. J Neurosci 23:9742-51 [PubMed]
Boucheny C, Carrillo R, Ros E, Coenen OJMD (2005) Real-time spiking-neural network: An adaptive cerebellar model Lecture Notes In Computer Science 3512:136-144
Bower JM (2010) Model-founded explorations of the roles of molecular layer inhibition in regulating purkinje cell responses in cerebellar cortex: more trouble for the beam hypothesis. Front Cell Neurosci [Journal] [PubMed]
Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581-609 [Journal] [PubMed]
Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43:745-57 [Journal] [PubMed]
Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI (2017) The Sleeping Cerebellum. Trends Neurosci 40:309-323 [Journal] [PubMed]
Carey MR, Regehr WG (2009) Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron 62:112-22 [Journal] [PubMed]
Clopath C, Badura A, De Zeeuw CI, Brunel N (2014) A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. J Neurosci 34:7203-15 [Journal] [PubMed]
   Vestibulo-Ocular Reflex model in Matlab (Clopath at al. 2014) [Model]
Cohen B (1974) The VOR Arc Vestibular System Part 1: Basic Mechanisms, Kornhuber HH, ed. pp.477
D'Angelo E, De Filippi G, Rossi P, Taglietti V (1998) Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J Neurophysiol 80:493-503 [Journal] [PubMed]
D'Angelo E, Mapelli L, Casellato C, Garrido JA, Luque N, Monaco J, Prestori F, Pedrocchi A, Ros E (2016) Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum 15:139-51 [Journal] [PubMed]
D'Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J Neurosci 21:759-70 [PubMed]
   Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001) [Model]
D'Angelo E, Rossi P, Taglietti V (1993) Different proportions of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum. Neuroscience 53:121-30 [PubMed]
Davie JT, Clark BA, Häusser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28:7599-609 [Journal] [PubMed]
De Gruijl JR, Bazzigaluppi P, de Jeu MT, De Zeeuw CI (2012) Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput Biol 8:e1002814 [Journal] [PubMed]
De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391-400 [PubMed]
Dean P, Porrill J, Stone JV (2002) Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc Biol Sci 269:1895-904 [Journal] [PubMed]
Demer JL, Oas JG, Baloh RW (1993) Visual-vestibular interaction in humans during active and passive, vertical head movement. J Vestib Res 3:101-14 [PubMed]
DiGregorio DA, Nusser Z, Silver RA (2002) Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35:521-33 [PubMed]
Dumas G, Perrin P, Ouedraogo E, Schmerber S (2016) How to perform the skull vibration-induced nystagmus test (SVINT). Eur Ann Otorhinolaryngol Head Neck Dis 133:343-348 [Journal] [PubMed]
Eccles JC, Llinás R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268-96 [PubMed]
Franchi E,Falotico E,Zambrano D,Muscolo GG,Marazzato L,Dario P (2010) A comparison between two bio-inspired adaptive models of Vestibulo-Ocular Reflex (VOR) implemented on the iCub robot Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on
Friedel P, van Hemmen JL (2008) Inhibition, not excitation, is the key to multimodal sensory integration. Biol Cybern 98:597-618 [Journal] [PubMed]
Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45:195-206 [PubMed]
Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619-35 [Journal] [PubMed]
Garrido JA, Luque NR, D'Angelo E, Ros E (2013) Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Front. Neural Circuits 7:159:1-20 [Journal] [PubMed]
   Distributed cerebellar plasticity implements adaptable gain control (Garrido et al., 2013) [Model]
Gonshor A, Jones GM (1976) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol 256:381-414 [PubMed]
Grasselli G, He Q, Wan V, Adelman JP, Ohtsuki G, Hansel C (2016) Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells. Cell Rep 14:2546-53 [Journal] [PubMed]
Hansel C, Linden DJ, D'Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467-75 [Journal] [PubMed]
He Q, Titley H, Grasselli G, Piochon C, Hansel C (2013) Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD. J Neurophysiol 109:1333-42 [Journal] [PubMed]
Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2015) Encoding of action by the Purkinje cells of the cerebellum. Nature 526:439-42 [Journal] [PubMed]
Howell FW, Dyrhfjeld-johnsen J, Maex R, Goddard N, De_schutter E (2000) A large scale model of the cerebellar cortex using P GENESIS Neurocomuting 32-33:1041-1046
Ito M (1982) Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. Annu Rev Neurosci 5:275-96 [Journal] [PubMed]
Ito M (2013) Error detection and representation in the olivo-cerebellar system. Front Neural Circuits 7:1 [Journal] [PubMed]
Kawato M (1990) Feedback-error-learning neural network for supervised motor learning Advanced Neural Computers 6:365-72
Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95-103 [PubMed]
Ke MC, Guo CC, Raymond JL (2009) Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci 12:1171-9 [Journal] [PubMed]
Keating JG, Thach WT (1995) Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol 73:1329-40 [Journal] [PubMed]
Kettner RE, Mahamud S, Leung HC, Sitkoff N, Houk JC, Peterson BW, Barto AG (1997) Prediction of complex two-dimensional trajectories by a cerebellar model of smooth pursuit eye movement. J Neurophysiol 77:2115-30 [Journal] [PubMed]
Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL (2005) Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol 94:3092-100 [Journal] [PubMed]
Kimpo RR, Rinaldi JM, Kim CK, Payne HL, Raymond JL (2014) Gating of neural error signals during motor learning. Elife 3:e02076 [Journal] [PubMed]
Kitazawa S, Wolpert DM (2005) Rhythmicity, randomness and synchrony in climbing fiber signals. Trends Neurosci 28:611-9 [Journal] [PubMed]
Kleberg FI, Fukai T, Gilson M (2014) Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity. Front Comput Neurosci 8:53 [Journal] [PubMed]
Korbo L, Andersen BB, Ladefoged O, Møller A (1993) Total numbers of various cell types in rat cerebellar cortex estimated using an unbiased stereological method. Brain Res 609:262-8 [PubMed]
Latorre R, Aguirre C, Rabinovich MI, Varona P (2013) Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns. Front Neural Circuits 7:138 [Journal] [PubMed]
Leigh RJ,Zee DS (2015) The neurology of eye movements Oxford University Press
Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY (2003) Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A 100:15989-93 [Journal] [PubMed]
Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J Neurophysiol 41:764-77 [Journal] [PubMed]
Lisberger SG, Sejnowski TJ (1992) Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature 360:159-61 [Journal] [PubMed]
Liu T, Xu D, Ashe J, Bushara K (2008) Specificity of inferior olive response to stimulus timing. J Neurophysiol 100:1557-61 [Journal] [PubMed]
Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197-213 [PubMed]
Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171-95 [PubMed]
Llinás R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3:958-65 [PubMed]
Llinás RR (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162:797-804 [Journal] [PubMed]
Lorente de No R (1933) Vestibulo-ocular reflex arc Archiv Neurol & Psychiatry
Luebke AE, Robinson DA (1994) Gain changes of the cat's vestibulo-ocular reflex after flocculus deactivation. Exp Brain Res 98:379-90 [PubMed]
Luque NR, Garrido JA, Carrillo RR, Coenen OJ, Ros E (2011) Cerebellar input configuration toward object model abstraction in manipulation tasks. IEEE Trans Neural Netw 22:1321-8 [Journal] [PubMed]
Luque NR, Garrido JA, Carrillo RR, D'Angelo E, Ros E (2014) Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation. Front Comput Neurosci 8:97 [Journal] [PubMed]
   Fast convergence of cerebellar learning (Luque et al. 2015) [Model]
Luque NR, Garrido JA, Carrillo RR, Tolu S, Ros E (2011) Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise. Int J Neural Syst 21:385-401 [Journal] [PubMed]
Luque NR,Carrillo RR,Naveros F,Garrido JA,Sa´ez-Lara MJ (2014) Integrated neural and robotic simulations. Simulation of cerebellar neurobiological substrate for an object-oriented dynamic model abstraction process Rob Auton Syst 62:1702-16
Maex R, De Schutter E (1998) Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521-37 [Journal] [PubMed]
   Network model of the granular layer of the cerebellar cortex (Maex, De Schutter 1998) [Model]
   Cerebellar granular layer (Maex and De Schutter 1998) [Model]
Mano N (1970) Changes of simple and complex spike activity of cerebellar purkinje cells with sleep and waking. Science 170:1325-7 [PubMed]
Marchesi GF, Strata P (1971) Mossy and climbing fiber activity during phasic and tonic phenomena of sleep. Pflugers Arch 323:219-40 [PubMed]
Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437-70 [PubMed]
Maruta J, Hensbroek RA, Simpson JI (2007) Intraburst and interburst signaling by climbing fibers. J Neurosci 27:11263-70 [Journal] [PubMed]
Masuda N, Amari S (2008) A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning. J Comput Neurosci 24:137-56 [Journal] [PubMed]
Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388-99 [Journal] [PubMed]
McElvain LE, Bagnall MW, Sakatos A, du Lac S (2010) Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron 68:763-75 [Journal] [PubMed]
McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS, Turner RW (2007) Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output. J Neurophysiol 97:2590-604 [Journal] [PubMed]
Medina JF, Lisberger SG (2008) Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci 11:1185-92 [Journal] [PubMed]
Medina JF, Mauk MD (2000) Computer simulation of cerebellar information processing. Nat Neurosci 3 Suppl:1205-11 [Journal] [PubMed]
Menzies JR, Porrill J, Dutia M, Dean P (2010) Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation. PLoS One [Journal] [PubMed]
Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci 4:273-99 [Journal] [PubMed]
Minor LB, Goldberg JM (1991) Vestibular-nerve inputs to the vestibulo-ocular reflex: a functional-ablation study in the squirrel monkey. J Neurosci 11:1636-48 [PubMed]
Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, Miyakawa H (2001) Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Res 891:106-15 [PubMed]
   Cerebellar purkinje cell: K and Ca channels regulate APs (Miyasho et al 2001) [Model]
Mori K (1997) Across-frequency nonlinear inhibition by GABA in processing of interaural time difference. Hear Res 111:22-30 [PubMed]
Morishita W, Sastry BR (1996) Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol 76:59-68 [Journal] [PubMed]
Najafi F (2014) Trial-by-trial coding of instructive signals in the cerebellum: Insights from eyeblink conditioning in mice University of Pennsylvania PhD Thesis [Journal]
Najafi F, Giovannucci A, Wang SS, Medina JF (2014) Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice. Elife 3:e03663 [Journal] [PubMed]
Najafi F, Medina JF (2013) Beyond "all-or-nothing" climbing fibers: graded representation of teaching signals in Purkinje cells. Front Neural Circuits 7:115 [Journal] [PubMed]
Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D'Angelo E (2006) LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol 95:686-99 [Journal] [PubMed]
   Short term plasticity at the cerebellar granule cell (Nieus et al. 2006) [Model]
Nusser Z, Cull-Candy S, Farrant M (1997) Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. Neuron 19:697-709 [PubMed]
Ohmae S, Medina JF (2015) Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci 18:1798-803 [Journal] [PubMed]
Ouardouz M, Sastry BR (2000) Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J Neurophysiol 84:1414-21 [Journal] [PubMed]
Placantonakis DG, Bukovsky AA, Zeng XH, Kiem HP, Welsh JP (2004) Fundamental role of inferior olive connexin 36 in muscle coherence during tremor. Proc Natl Acad Sci U S A 101:7164-9 [Journal] [PubMed]
Popa LS, Streng ML, Hewitt AL, Ebner TJ (2016) The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning. Cerebellum 15:93-103 [Journal] [PubMed]
Porrill J, Dean P (2007) Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol 3:1935-50 [Journal] [PubMed]
Porrill J, Dean P, Stone JV (2004) Recurrent cerebellar architecture solves the motor-error problem. Proc Biol Sci 271:789-96 [Journal] [PubMed]
Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663-74 [PubMed]
Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912-24 [Journal] [PubMed]
Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R (2006) Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Comput 18:2959-93 [Journal] [PubMed]
Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys Rev Lett 86:364-7 [Journal] [PubMed]
Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248-63 [Journal] [PubMed]
Sargolzaei A, Abdelghani M, Yen KK, Sargolzaei S (2016) Sensorimotor control: computing the immediate future from the delayed present. BMC Bioinformatics 17 Suppl 7:245 [Journal] [PubMed]
Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann N Y Acad Sci 978:359-90 [PubMed]
Schonewille M, Khosrovani S, Winkelman BH, Hoebeek FE, De Jeu MT, Larsen IM, Van der Burg J, Schmolesky MT, Frens MA, De Zeeuw CI (2006) Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat Neurosci 9:459-61; author reply 461 [Journal] [PubMed]
Schrauwen B, Campenhout JV (2003) BSA, a fast and accurate spike train encoding scheme Proceedings of the International Joint Conference on Neural Networks 4:2825-2830
Schweighofer N (1995) Computational Models of the Cerebellum in the Adaptive Control of Movements Phd Thesis
Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 10:86-94 [PubMed]
Schweighofer N, Doya K, Kawato M (1999) Electrophysiological properties of inferior olive neurons: A compartmental model. J Neurophysiol 82:804-17 [Journal] [PubMed]
Shadmehr R, Brashers-Krug T (1997) Functional stages in the formation of human long-term motor memory. J Neurosci 17:409-19 [PubMed]
Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821-5 [PubMed]
Shibata T, Schaal S (2001) Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks. Neural Netw 14:201-16 [PubMed]
Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12 [Journal] [PubMed]
Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919-26 [Journal] [PubMed]
Stone LS, Lisberger SG (1990) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol 63:1241-61 [Journal] [PubMed]
Thach WT (1967) Somatosensory receptive fields of single units in cat cerebellar cortex. J Neurophysiol 30:675-96 [Journal] [PubMed]
Tolu S, Vanegas M, Garrido JA, Luque NR, Ros E (2013) Adaptive and predictive control of a simulated robot arm. Int J Neural Syst 23:1350010 [Journal] [PubMed]
Tolu S, Vanegas M, Luque NR, Garrido JA, Ros E (2012) Bio-inspired adaptive feedback error learning architecture for motor control. Biol Cybern 106:507-22 [Journal] [PubMed]
van Alphen AM, Stahl JS, De Zeeuw CI (2001) The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response. Brain Res 890:296-305 [PubMed]
van Rossum MC (2001) A novel spike distance. Neural Comput 13:751-63 [PubMed]
Vannucci L,Tolu S,Falotico E,Dario P,Lund HH,Laschi C (2016) Adaptive gaze stabilization through cerebellar internal models in a humanoid robot Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, Vannucci L:Tolu S:Falotico E:Dario P:Lund HH:Laschi C, ed.
Victor JD (2005) Spike train metrics. Curr Opin Neurobiol 15:585-92 [Journal] [PubMed]
Vijayakumar S,Schaal S (2000) Locally weighted projection regression: An O (n) algorithm for incremental real time learning in high dimensional space Proceedings Of The Seventeenth International Conference On Machine Learning (ICML, Vijayakumar S:Schaal S, ed.
Welberg L (2009) Cerebellum: An olive branch to two theories Nat Rev Neurosci 10:468
Welsh JP, Lang EJ, Suglhara I, Llinás R (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453-7 [Journal] [PubMed]
Wisden W, Murray AJ, McClure C, Wulff P (2009) Studying Cerebellar Circuits by Remote Control of Selected Neuronal Types with GABA(A) Receptors. Front Mol Neurosci 2:29 [Journal] [PubMed]
Wu X, Ashe J, Bushara KO (2011) Role of olivocerebellar system in timing without awareness. Proc Natl Acad Sci U S A 108:13818-22 [Journal] [PubMed]
Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W, Farrant M, De Zeeuw CI (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12:1042-9 [Journal] [PubMed]
Xu D, Liu T, Ashe J, Bushara KO (2006) Role of the olivo-cerebellar system in timing. J Neurosci 26:5990-5 [Journal] [PubMed]
Yamazaki T, Nagao S, Lennon W, Tanaka S (2015) Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc Natl Acad Sci U S A 112:3541-6 [Journal] [PubMed]
   Cerebellar memory consolidation model (Yamazaki et al. 2015) [Model]
Yamazaki T, Tanaka S (2007) The cerebellum as a liquid state machine. Neural Netw 20:290-7 [Journal] [PubMed]
Yamazaki T, Tanaka S (2009) Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum 8:423-32 [Journal] [PubMed]
Zang Y, Dieudonné S, De Schutter E (2018) Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell Reports 24(6):1536-1549 [Journal] [PubMed]
   Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018) [Model]
Zhou H, Voges K, Lin Z, Ju C, Schonewille M (2015) Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. J Neurophysiol 113:2524-36 [Journal] [PubMed]
(137 refs)