Citations for Olfactory Mitral cell: AP initiation modes (Chen et al 2002)

Legends: Link to a Model Reference cited by multiple papers


Chen WR, Shen GY, Shepherd GM, Hines ML, Midtgaard J (2002) Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. J Neurophysiol 88:2755-64 [PubMed]

References and models cited by this paper

References and models that cite this paper

Allison AC (1952) The morphology of the olfactory system in the vertebrates. Biol Rev 28:195-244
ANDERSEN P (1960) Interhippocampal impulses. II. Apical dendritic activation of CAI neurons. Acta Physiol Scand 48:178-208 [Journal] [PubMed]
Antic S, Wuskell JP, Loew L, Zecevic D (2000) Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ. J Physiol 527 Pt 1:55-69 [PubMed]
Berkowicz DA, Trombley PQ, Shepherd GM (1994) Evidence for glutamate as the olfactory receptor cell neurotransmitter. J Neurophysiol 71:2557-61 [Journal] [PubMed]
Bischofberger J, Jonas P (1997) Action potential propagation into the presynaptic dendrites of rat mitral cells. J Physiol 504 ( Pt 2):359-65 [PubMed]
Cajal R (1911) Histologie Du Systeme Nerveux De L Homme Et Des Vertebres 2
Chen WR, Midtgaard J, Shen GY, Hines ML, Shepherd GM (2000) Analysis of double spikes in mitral cell primary dendrite. Achems Proc 22:43
Chen WR, Midtgaard J, Shepherd GM (1997) Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278:463-7 [PubMed]
Chen WR, Shepherd GM (1997) Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb. Brain Res 745:189-96 [PubMed]
Eccles JC (1957) The Physiology Of Nerve Cells
ECCLES JC, LIBET B, YOUNG RR (1958) The behaviour of chromatolysed motoneurones studied by intracellular recording. J Physiol 143:11-40 [PubMed]
EDWARDS C, OTTOSON D (1958) The site of impulse initiation in a nerve cell of a crustacean stretch receptor. J Physiol 143:138-48 [PubMed]
Ennis M, Zimmer LA, Shipley MT (1996) Olfactory nerve stimulation activates rat mitral cells via NMDA and non-NMDA receptors in vitro. Neuroreport 7:989-92 [PubMed]
FUORTES MG, FRANK K, BECKER MC (1957) Steps in the production of motoneuron spikes. J Gen Physiol 40:735-52 [PubMed]
GASSER HS (1956) Olfactory nerve fibers. J Gen Physiol 39:473-96 [PubMed]
Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21:1189-200 [PubMed]
Häusser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739-44 [PubMed]
Herreras O (1990) Propagating dendritic action potential mediates synaptic transmission in CA1 pyramidal cells in situ. J Neurophysiol 64:1429-41 [Journal] [PubMed]
Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]
Jahr CE, Nicoll RA (1982) An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J Physiol 326:213-34 [PubMed]
Larkum ME, Rioult MG, Lüscher HR (1996) Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J Neurophysiol 75:154-70 [Journal] [PubMed]
Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338-41 [Journal] [PubMed]
Magee JC (1999) Voltage-gated ion channels in dendrites. Dendrites, Stuart G: Spruston N: Hausser M, ed. pp.139
Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67-90 [PubMed]
Martina M, Vida I, Jonas P (2000) Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287:295-300 [PubMed]
Mori K (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog Neurobiol 29:275-320 [PubMed]
Mori K, Nowycky MC, Shepherd GM (1982) Impulse activity in presynaptic dendrites: analysis of mitral cells in the isolated turtle olfactory bulb. J Neurosci 2:497-502 [PubMed]
Pinching AJ, Powell TP (1971) The neuropil of the glomeruli of the olfactory bulb. J Cell Sci 9:347-77 [PubMed]
Price JL, Powell TP (1970) The mitral and short axon cells of the olfactory bulb. J Cell Sci 7:631-51 [PubMed]
RALL W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491-527 [PubMed]
Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol 31:884-915 [Journal] [PubMed]
   Theoretical reconstrucion of field potentials and dendrodendritic synaptic...(Rall & Shepherd 1968) [Model]
Ramon y Cajal S (1911) Histologie du Systeme Nerveux de lHomme et des Vertebrates.
Rapp M, Yarom Y, Segev I (1996) Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc Natl Acad Sci U S A 93:11985-90 [PubMed]
Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245-55 [PubMed]
Rice ME, Cragg SJ, Greenfield SA (1997) Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J Neurophysiol 77:853-62 [Journal] [PubMed]
Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML (1999) Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J Neurophysiol 82:3006-20 [Journal] [PubMed]
   Action potential initiation in the olfactory mitral cell (Shen et al 1999) [Model]
Simmons ML, Terman GW, Gibbs SM, Chavkin C (1995) L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells. Neuron 14:1265-72 [PubMed]
Spencer WA, Kandel ER (1961) ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. J Neurophysiol 24:272-85 [Journal] [PubMed]
Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505 ( Pt 3):617-32 [PubMed]
Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69-72 [Journal] [PubMed]
Traub RD, Miles R (1991) Multiple modes of neuronal population activity emerge after modifying specific synapses in a model of the CA3 region of the hippocampus. Ann N Y Acad Sci 627:277-90 [PubMed]
Turner RW, Meyers DE, Richardson TL, Barker JL (1991) The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J Neurosci 11:2270-80 [PubMed]
Vassar R, Chao SK, Sitcheran R, Nuñez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981-91 [PubMed]
Velte TJ, Masland RH (1999) Action potentials in the dendrites of retinal ganglion cells. J Neurophysiol 81:1412-7 [Journal] [PubMed]
White EL (1973) Synaptic organization of the mammalian olfactory glomerulus: new findings including an intraspecific variation. Brain Res 60:299-313 [PubMed]
Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307-17 [PubMed]
   Thalamic Relay Neuron: I-T current (Williams, Stuart 2000) [Model]
Xiong W, Chen WR (2002) Dynamic gating of spike propagation in the mitral cell lateral dendrites. Neuron 34:115-26 [PubMed]
Zilberter Y (2000) Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J Physiol 528:489-96 [PubMed]
Zilberter Y, Kaiser KM, Sakmann B (1999) Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 24:979-88 [PubMed]
Carnevale NT, Morse TM (1996-2009) Research reports that have used NEURON Web published citations at the NEURON website [Journal]
Cleland TA, Sethupathy P (2006) Non-topographical contrast enhancement in the olfactory bulb. BMC Neurosci 7:7 [Journal] [PubMed]
David F, Linster C, Cleland TA (2008) Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J Comput Neurosci 25:25-38 [Journal] [PubMed]
   Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008) [Model]
Djurisic M, Antic S, Chen WR, Zecevic D (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24:6703-14 [Journal] [PubMed]
   Voltage imaging calibration in tuft dendrites of mitral cells (Djurisic et al 2004) [Model]
Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [Journal] [PubMed]
   Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015) [Model]
Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography
Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730-42 [Journal] [PubMed]
Maia PD, Kutz JN (2014) Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury. J Comput Neurosci 37:317-32 [Journal] [PubMed]
McIntyre AB, Cleland TA (2016) Biophysical constraints on lateral inhibition in the olfactory bulb. J Neurophysiol 115:2937-49 [Journal] [PubMed]
Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50 [Journal] [PubMed]
   3D model of the olfactory bulb (Migliore et al. 2014) [Model]
Migliore M, Hines ML, McTavish TS, Shepherd GM (2010) Functional roles of distributed synaptic clusters in the mitral-granule cell network of the olfactory bulb. Front Integr Neurosci 4:122 [Journal] [PubMed]
   Olfactory bulb cluster formation (Migliore et al. 2010) [Model]
Migliore M, Hines ML, Shepherd GM (2005) The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. J Comput Neurosci 18:151-61 [Journal] [PubMed]
   Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005) [Model]
Migliore M, Shepherd GM (2008) Dendritic action potentials connect distributed dendrodendritic microcircuits. J Comput Neurosci 24:207-21 [Journal] [PubMed]
   Olfactory bulb mitral and granule cell: dendrodendritic microcircuits (Migliore and Shepherd 2008) [Model]
O'Connor S, Angelo K, Jacob TJC (2012) Burst firing versus synchrony in a gap junction connected olfactory bulb mitral cell network model Frontiers in Computational Neuroscience 6:75:1-18 [Journal] [PubMed]
   Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012) [Model]
Simões-de-Souza FM, Antunes G, Roque AC (2014) Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations. Front Comput Neurosci 8:128 [Journal] [PubMed]
   Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014) [Model]
Yu Y, McTavish TS, Hines ML, Shepherd GM, Valenti C, Migliore M (2013) Sparse distributed representation of odors in a large-scale olfactory bulb circuit. PLoS Comput Biol 9:e1003014 [Journal] [PubMed]
   Large scale model of the olfactory bulb (Yu et al., 2013) [Model]
(68 refs)