Citations for Differential modulation of pattern and rate in a dopamine neuron model (Canavier and Landry 2006)

Legends: Link to a Model Reference cited by multiple papers


Canavier CC, Landry RS (2006) An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. J Neurophysiol 96:2549-63 [PubMed]

References and models cited by this paper

References and models that cite this paper

Amini B, Clark JW, Canavier CC (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82:2249-61 [Journal] [PubMed]
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415-55 [PubMed]
Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 24:7482-90 [Journal] [PubMed]
Brodie MS, McElvain MA, Bunney EB, Appel SB (1999) Pharmacological reduction of small conductance calcium-activated potassium current (SK) potentiates the excitatory effect of ethanol on ventral tegmental area dopamine neurons. J Pharmacol Exp Ther 290:325-33 [PubMed]
Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49-69 [PubMed]
   Midbrain dopamine neuron: firing patterns (Canavier 1999) [Model]
Cardozo DL, Bean BP (1995) Voltage-dependent calcium channels in rat midbrain dopamine neurons: modulation by dopamine and GABAB receptors. J Neurophysiol 74:1137-48 [Journal] [PubMed]
Chan CS, Wokosin DL, Rick CE (2005) Dendritic Cav1.3L-type calcium channels drive pacemaking in substantia nigra pars compacts dopaminergic neurons Soc Neurosci Abstr 738.16
Charlety PJ, Grenhoff J, Chergui K, De la Chapelle B, Buda M, Svensson TH, Chouvet G (1991) Burst firing of mesencephalic dopamine neurons is inhibited by somatodendritic application of kynurenate. Acta Physiol Scand 142:105-12 [Journal] [PubMed]
Chergui K, Charléty PJ, Akaoka H, Saunier CF, Brunet JL, Buda M, Svensson TH, Chouvet G (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci 5:137-44 [PubMed]
Chergui K, Nomikos GG, Mathé JM, Gonon F, Svensson TH (1996) Burst stimulation of the medial forebrain bundle selectively increase Fos-like immunoreactivity in the limbic forebrain of the rat. Neuroscience 72:141-56 [PubMed]
Christoffersen CL, Meltzer LT (1995) Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors. Neuroscience 67:373-81 [PubMed]
Dalby NO, Mody I (2003) Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. J Neurophysiol 90:786-97 [Journal] [PubMed]
Destexhe A, Mainen Z, Sejnowski T (1995) Fast Kinetic Models for Simulating AMPA, NMDA, GABAA and GABAB Receptors The Neurobiology of Computation, Bower J, ed. pp.9 [Journal]
   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
Fà M, Mereu G, Ghiglieri V, Meloni A, Salis P, Gessa GL (2003) Electrophysiological and pharmacological characteristics of nigral dopaminergic neurons in the conscious, head-restrained rat. Synapse 48:1-9 [Journal] [PubMed]
Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394:78-82 [Journal] [PubMed]
Fiorillo CD, Williams JT (2000) Cholinergic inhibition of ventral midbrain dopamine neurons. J Neurosci 20:7855-60 [PubMed]
Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci 36:1983-94 [PubMed]
Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24:19-28 [PubMed]
Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877-90 [PubMed]
Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 4:2866-76 [PubMed]
Häusser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637-47 [PubMed]
Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475-92 [PubMed]
Ji H, Shepard PD (2006) SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience 140:623-33 [Journal] [PubMed]
Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665-7 [PubMed]
Johnson SW, Wu YN (2004) Multiple mechanisms underlie burst firing in rat midbrain dopamine neurons in vitro. Brain Res 1019:293-6 [Journal] [PubMed]
Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5:20-5 [Journal] [PubMed]
Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346-57 [Journal] [PubMed]
   Regulation of the firing pattern in dopamine neurons (Komendantov et al 2004) [Model]
Koob GF, Vaccarino FJ, Amalric M, Bloom FE (1987) Positive rein-forcement properties of drugs: Search for neural substrates Brain Reward Systems And Abuse, Engel J:Oreland L, ed. pp.35
Kuznetsov AS, Kopell NJ, Wilson CJ (2006) Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. J Neurophysiol 95:932-47 [Journal] [PubMed]
   Dopaminergic cell bursting model (Kuznetsov et al 2006) [Model]
Lenaeus MJ, Vamvouka M, Focia PJ, Gross A (2005) Structural basis of TEA blockade in a model potassium channel. Nat Struct Mol Biol 12:454-9 [Journal] [PubMed]
Liégeois JF, Mercier F, Graulich A, Graulich-Lorge F, Scuvée-Moreau J, Seutin V (2003) Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr Med Chem 10:625-47 [PubMed]
Mereu G, Lilliu V, Casula A, Vargiu PF, Diana M, Musa A, Gessa GL (1997) Spontaneous bursting activity of dopaminergic neurons in midbrain slices from immature rats: role of N-methyl-D-aspartate receptors. Neuroscience 77:1029-36 [PubMed]
Overton P, Clark D (1992) Iontophoretically administered drugs acting at the N-methyl-D-aspartate receptor modulate burst firing in A9 dopamine neurons in the rat. Synapse 10:131-40 [Journal] [PubMed]
Paladini CA, Fiorillo CD, Morikawa H, Williams JT (2001) Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat Neurosci 4:275-81 [Journal] [PubMed]
Paladini CA, Tepper JM (1999) GABA(A) and GABA(B) antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo. Synapse 32:165-76 [Journal] [PubMed]
Ping HX, Shepard PD (1996) Apamin-sensitive Ca(2+)-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport 7:809-14 [PubMed]
Prisco S, Natoli S, Bernardi G, Mercuri NB (2002) Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 42:289-96
Schneggenburger R (1998) Altered voltage dependence of fractional Ca2+ current in N-methyl-D-aspartate channel pore mutants with a decreased Ca2+ permeability. Biophys J 74:1790-4 [Journal] [PubMed]
Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1-27 [Journal] [PubMed]
Seutin V, Johnson SW, North RA (1993) Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons. Brain Res 630:341-4 [PubMed]
Silva NL, Pechura CM, Barker JL (1990) Postnatal rat nigrostriatal dopaminergic neurons exhibit five types of potassium conductances. J Neurophysiol 64:262-72 [Journal] [PubMed]
Smith ID, Grace AA (1992) Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse 12:287-303 [Journal] [PubMed]
Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583-7 [Journal] [PubMed]
Wang T, O'Connor WT, Ungerstedt U, French ED (1994) N-methyl-D-aspartic acid biphasically regulates the biochemical and electrophysiological response of A10 dopamine neurons in the ventral tegmental area: in vivo microdialysis and in vitro electrophysiological studies. Brain Res 666:255-62 [PubMed]
Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J, Seutin V (2005) SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 22:3111-21 [Journal] [PubMed]
Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660-9 [PubMed]
Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83:3084-100 [Journal] [PubMed]
Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443-56 [PubMed]
Zhang J, Chiodo LA, Freeman AS (1994) Influence of excitatory amino acid receptor subtypes on the electrophysiological activity of dopaminergic and nondopaminergic neurons in rat substantia nigra. J Pharmacol Exp Ther 269:313-21 [PubMed]
Zhang XF, Hu XT, White FJ, Wolf ME (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther 281:699-706 [PubMed]
Enrico P, Migliore M, Spiga S, Mulas G, Caboni F, Diana M (2016) Morphofunctional alterations in ventral tegmental area dopamine neurons in acute and prolonged opiates withdrawal. A computational perspective. Neuroscience 322:195-207 [Journal] [PubMed]
   VTA neurons: Morphofunctional alterations in acute opiates withdrawal (Enrico et al. 2016) [Model]
Knowlton C, Kutterer S, Roeper J, Canavier CC (2018) Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study. J Neurophysiol 119:84-95 [Journal] [PubMed]
   Model for K-ATP mediated bursting in mSNc DA neurons (Knowlton et al 2018) [Model]
Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC (2010) Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28:389-403 [Journal] [PubMed]
   Regulation of firing frequency in a midbrain dopaminergic neuron model (Kuznetsova et al. 2010) [Model]
Meza RC, López-Jury L, Canavier CC, Henny P (2018) Role of the Axon Initial Segment in the Control of Spontaneous Frequency of Nigral Dopaminergic Neurons In Vivo. J Neurosci 38:733-744 [Journal] [PubMed]
   Role of the AIS in the control of spontaneous frequency of dopaminergic neurons (Meza et al 2017) [Model]
Migliore M, Cannia C, Canavier CC (2008) A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling. J Neurophysiol 99:2703-7 [Journal] [PubMed]
   Nigral dopaminergic neurons: effects of ethanol on Ih (Migliore et al. 2008) [Model]
Szucs A, Rátkai A, Schlett K, Huerta R (2017) Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp. Eur J Neurosci 46:2429-2444 [Journal] [PubMed]
Yu N, Canavier CC (2015) A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. J Math Neurosci 5:5 [Journal] [PubMed]
   Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015) [Model]
(58 refs)