Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950-61 [PubMed]

   Spike timing detection in different forms of LTD (Doi et al 2005)

References and models cited by this paper

References and models that cite this paper

Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812-5 [PubMed]
Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13-26 [PubMed]
Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751-4 [Journal] [PubMed]
Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381-7 [PubMed]
   Emergent properties of networks of biological signaling pathways (Bhalla, Iyengar 1999) [Model]
Chen C, Thompson RF (1995) Temporal specificity of long-term depression in parallel fiber--Purkinje synapses in rat cerebellar slice. Learn Mem 2:185-98 [PubMed]
Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, Franz-Bacon K, Reggiani A, Matarese V, Condé F (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237-43 [Journal] [PubMed]
Daniel H, Levenes C, Crépel F (1998) Cellular mechanisms of cerebellar LTD. Trends Neurosci 21:401-7 [PubMed]
De Schutter E (1995) Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. Trends Neurosci 18:291-5 [PubMed]
Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium 22:321-31 [PubMed]
Eilers J, Augustine GJ, Konnerth A (1995) Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373:155-8 [Journal] [PubMed]
Ekerot CF, Kano M (1989) Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neurosci Res 6:264-8 [PubMed]
Fiala JC, Grossberg S, Bullock D (1996) Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J Neurosci 16:3760-74 [PubMed]
Fierro L, DiPolo R, Llano I (1998) Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. J Physiol 510 ( Pt 2):499-512 [PubMed]
Fierro L, Llano I (1996) High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol 496 ( Pt 3):617-25 [PubMed]
Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753-6 [Journal] [PubMed]
Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23:3186-95 [PubMed]
Fujiwara A, Hirose K, Yamazawa T, Iino M (2001) Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons. Neuroreport 12:2647-51 [PubMed]
Harris KM, Stevens JK (1988) Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 8:4455-69 [PubMed]
Hartell NA (1996) Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron 16:601-10 [PubMed]
Hartell NA, Furuya S, Jacoby S, Okada D (2001) Intercellular action of nitric oxide increases cGMP in cerebellar Purkinje cells. Neuroreport 12:25-8 [PubMed]
Inoue T, Kato K, Kohda K, Mikoshiba K (1998) Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci 18:5366-73 [PubMed]
Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327-38 [Journal] [PubMed]
Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162-76 [PubMed]
Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143-95 [Journal] [PubMed]
Ito M (2002) The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 3:896-902 [Journal] [PubMed]
Jiang H, Wu D, Simon MI (1994) Activation of phospholipase C beta 4 by heterotrimeric GTP-binding proteins. J Biol Chem 269:7593-6 [PubMed]
Karachot L, Kado RT, Ito M (1994) Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci Res 21:161-8 [PubMed]
Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718-27 [PubMed]
Khodakhah K, Ogden D (1995) Fast activation and inactivation of inositol trisphosphate-evoked Ca2+ release in rat cerebellar Purkinje neurones. J Physiol 487 ( Pt 2):343-58 [PubMed]
Kim JJ, Thompson RF (1997) Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci 20:177-81 [PubMed]
Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J 72:674-90 [PubMed]
Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693-702 [PubMed]
Linden DJ, Connor JA (1995) Long-term synaptic depression. Annu Rev Neurosci 18:319-57 [Journal] [PubMed]
Llinás R, Lang EJ, Welsh JP (1997) The cerebellum, LTD, and memory: alternative views. Learn Mem 3:445-55 [PubMed]
Luzzi V, Sims CE, Soughayer JS, Allbritton NL (1998) The physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis. J Biol Chem 273:28657-62 [PubMed]
Macgregor RJ (1987) Neural and Brain Modeling.
Maeda H, Ellis-Davies GC, Ito K, Miyashita Y, Kasai H (1999) Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron 24:989-1002 [PubMed]
Marchant JS, Taylor CW (1997) Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity. Curr Biol 7:510-8 [PubMed]
Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437-70 [PubMed]
Mateos JM, Benítez R, Elezgarai I, Azkue JJ, Lázaro E, Osorio A, Bilbao A, Doñate F, Sarría R, Conquet F, Ferraguti F, Kuhn R, Knöpfel T, Grandes P (2000) Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at parallel fiber-Purkinje cell synapses in the rat cerebellar cortex. J Neurochem 74:1301-9 [PubMed]
Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN (1992) Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J Neurophysiol 68:1178-89 [Journal] [PubMed]
Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233-44 [PubMed]
Rose CR, Konnerth A (2001) Stores not just for storage. intracellular calcium release and synaptic plasticity. Neuron 31:519-22 [PubMed]
Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33:439-52 [PubMed]
Sabatini BL, Svoboda K (2000) Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408:589-93 [Journal] [PubMed]
Schreurs BG, Oh MM, Alkon DL (1996) Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. J Neurophysiol 75:1051-60 [Journal] [PubMed]
Stuart G, Häusser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13:703-12 [PubMed]
Sugiyama T, Hirono M, Suzuki K, Nakamura Y, Aiba A, Nakamura K, Nakao K, Katsuki M, Yoshioka T (1999) Localization of phospholipase Cbeta isozymes in the mouse cerebellum. Biochem Biophys Res Commun 265:473-8 [Journal] [PubMed]
Tanaka J, Nakagawa S, Kushiya E, Yamasaki M, Fukaya M, Iwanaga T, Simon MI, Sakimura K, Kano M, Watanabe M (2000) Gq protein alpha subunits Galphaq and Galpha11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. Eur J Neurosci 12:781-92 [PubMed]
Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR (2000) Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. Eur J Neurosci 12:945-54 [PubMed]
Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [Journal] [PubMed]
   Dendritica (Vetter et al 2001) [Model]
Wang SS, Denk W, Häusser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266-73 [Journal] [PubMed]
Xu T, Naraghi M, Kang H, Neher E (1997) Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J 73:532-45 [Journal] [PubMed]
Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M (2002) Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity. J Neurophysiol 87:1554-71 [Journal] [PubMed]
Anwar H, Hong S, De Schutter E (2012) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum 11:681-93 [Journal] [PubMed]
   Controlling KCa channels with different Ca2+ buffering models in Purkinje cell (Anwar et al. 2012) [Model]
Ashhad S, Narayanan R (2013) Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 591:1645-69 [Journal] [PubMed]
   Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013) [Model]
Chen W, De Schutter E (2014) Python-based geometry preparation and simulation visualization toolkits for STEPS. Front Neuroinform 8:37 [Journal] [PubMed]
   Python-based toolkits for STEPS (Chen and De Schutter 2014) [Model]
Hituri K, Linne ML (2013) Comparison of models for IP3 receptor kinetics using stochastic simulations. PLoS One 8:e59618 [Journal] [PubMed]
   IP3R model comparison (Hituri and Linne 2013) [Model]
Manita S, Ross WN (2010) IP(3) mobilization and diffusion determine the timing window of Ca(2+) release by synaptic stimulation and a spike in rat CA1 pyramidal cells. Hippocampus 20:524-39 [Journal] [PubMed]
Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152 [Journal] [PubMed]
Roberts PD (2007) Stability of complex spike timing-dependent plasticity in cerebellar learning. J Comput Neurosci 22:283-96 [Journal] [PubMed]
   Stability of complex spike timing-dependent plasticity in cerebellar learning (Roberts 2007) [Model]
Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]
   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]
Urakubo H, Honda M, Froemke RC, Kuroda S (2008) Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J Neurosci 28:3310-23 [Journal] [PubMed]
   An allosteric kinetics of NMDARs in STDP (Urakubo et al. 2008) [Model]
Wetmore DZ, Mukamel EA, Schnitzer MJ (2008) Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. J Neurophysiol 100:2328-47 [Journal] [PubMed]
Zamora Chimal CG, De Schutter E (2018) Ca2+ Requirements for Long-Term Depression Are Frequency Sensitive in Purkinje Cells. Front Mol Neurosci 11:438 [Journal] [PubMed]
   Ca2+ requirements for Long-Term Depression in Purkinje Cells (Criseida Zamora et al 2018) [Model]
(66 refs)