Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Badel L, Lefort S, Brette R, Petersen CC, Gerstner W, Richardson MJ (2008) Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99:656-66 [PubMed]

References and models cited by this paper

References and models that cite this paper

Abbott LF, van Vreeswijk C (1993) Asynchronous states in networks of pulse-coupled oscillators. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 48:1483-1490 [PubMed]
Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637-42 [Journal] [PubMed]
   Adaptive exponential integrate-and-fire model (Brette & Gerstner 2005) [Model]
Brette R, Piwkowska Z, Rudolph M, Bal T, Destexhe A (2007) A non-parametric electrode model for intracellular recording Neurocomput 70:1597-1601
Brette R, Rudolph M, Piwkowska Z, Bal T, Destexhe A (2005) How to emulate double-electrode recordings with a single-electrode? A new method of active electrode compensation Soc Neurosci Abstr 31:688.2
Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11:1621-71 [PubMed]
   Fast global oscillations in networks of I&F neurons with low firing rates (Brunel and Hakim 1999) [Model]
Brunel N, Hakim V, Richardson MJ (2003) Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E Stat Nonlin Soft Matter Phys 67:051916 [Journal] [PubMed]
Burkitt AN (2001) Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials. Biol Cybern 85:247-55 [Journal] [PubMed]
Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1-19 [Journal] [PubMed]
Chacron MJ, Lindner B, Longtin A (2007) Threshold fatigue and information transfer. J Comput Neurosci 23:301-11 [Journal] [PubMed]
Clopath C, Jolivet R, Rauch A, Luscher HR, Gerstner W (2007) Predicting neuronal activity with simple models of the threshold type: adaptive exponential integrate-and-fire model with two compartments Neurocomput 70:1668-1673
Destexhe A, Rudolph M (2004) Extracting information from the power spectrum of synaptic noise. J Comput Neurosci 17:327-45 [Journal] [PubMed]
Ermentrout B (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8:979-1001 [PubMed]
Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. Siam J Appl Math 46:233-253
Fourcaud-Trocmé N, Brunel N (2005) Dynamics of the instantaneous firing rate in response to changes in input statistics. J Comput Neurosci 18:311-21 [Journal] [PubMed]
Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23:11628-40 [PubMed]
FUORTES MG, MANTEGAZZINI F (1962) Interpretation of the repetitive firing of nerve cells. J Gen Physiol 45:1163-79 [PubMed]
Geisler CD, Goldberg JM (1966) A stochastic model of the repetitive activity of neurons. Biophys J 6:53-69 [Journal] [PubMed]
Gerstner W (2001) Populations of spiking neurons Pulsed neural networks, Maas W:Bishop C, ed.
Gerstner W, Kistler WM (2002) Spiking neuron models
Gerstner W, van Hemmen JL (1993) Coherence and incoherence in a globally coupled ensemble of pulse-emitting units. Phys Rev Lett 71:312-315 [Journal] [PubMed]
Gigante G, Mattia M, Del Giudice P (2007) Diverse population-bursting modes of adapting spiking neurons. Phys Rev Lett 98:148101 [Journal] [PubMed]
Gutkin BS, Ermentrout GB (1998) Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Comput 10:1047-65 [PubMed]
HODGKIN AL, HUXLEY AF, KATZ B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424-48 [PubMed]
Huys QJ, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96:872-90 [Journal] [PubMed]
   Efficient estimation of detailed single-neuron models (Huys et al. 2006) [Model]
Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063-70 [Journal] [PubMed]
   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]
Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959-76 [Journal] [PubMed]
   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]
Kistler WM, Gerstner W, van Hemmen JL (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput 9:1015-1045
Koch C (1999) Biophysics Of Computation: Information Processing in Single Neurons
Lapicque L (1907) Recherches quantitatives sur lexcitation electrique des nerfs traitee comme une polarisation J Physiol Pathol Gen 9:620-635 [Journal]
Latham PE, Richmond BJ, Nelson PG, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J Neurophysiol 83:808-27 [Journal] [PubMed]
Lindner B, Garcia-ojalvo J, Neiman A, Schimansky-geier L (2004) Effects of noise in excitable systems Phys Rep 392:321
Lindner B, Longtin A (2005) Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron. J Theor Biol 232:505-21 [Journal] [PubMed]
McCormick DA, Shu Y, Yu Y (2007) Neurophysiology: Hodgkin and Huxley model--still standing? Nature 445:E1-2; discussion E2-3 [Journal] [PubMed]
   AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008) [Model]
Naundorf B, Wolf F, Volgushev M (2006) Unique features of action potential initiation in cortical neurons. Nature 440:1060-3 [Journal] [PubMed]
Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16:2533-61 [Journal] [PubMed]
Rauch A, La Camera G, Luscher HR, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J Neurophysiol 90:1598-612 [Journal] [PubMed]
Richardson MJ (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys Rev E Stat Nonlin Soft Matter Phys 69:051918 [Journal] [PubMed]
Richardson MJ, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538-54 [Journal] [PubMed]
Richardson MJ, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17:923-47 [Journal] [PubMed]
Stein RB (1967) The information capacity of nerve cells using a frequency code. Biophys J 7:797-826 [Journal] [PubMed]
Swensen AM, Marder E (2000) Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J Neurosci 20:6752-9 [PubMed]
Uhlenbeck GE, Ornstein LS (1930) On the theory of Brownian motion Phys Rev 36:823-841 [Journal]
Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402-13 [Journal] [PubMed]
   Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996) [Model]
Wiener N (1958) Nonlinear Problems in Random Theory
Brette R (2013) Sharpness of spike initiation in neurons explained by compartmentalization. PLoS Comput Biol 9:e1003338 [Journal] [PubMed]
   Sharpness of spike initiation in neurons explained by compartmentalization (Brette 2013) [Model]
Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344-52 [Journal] [PubMed]
   Voltage-based STDP synapse (Clopath et al. 2010) [Model]
Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4:e1000248 [Journal] [PubMed]
   Tag Trigger Consolidation (Clopath and Ziegler et al. 2008) [Model]
Costa RP, Froemke RC, Sjöström PJ, van Rossum MC (2015) Unified pre- and postsynaptic long-term plasticity enables reliable and flexible learning. Elife [Journal] [PubMed]
   Memory savings through unified pre- and postsynaptic STDP (Costa et al 2015) [Model]
Daneshzand M, Faezipour M, Barkana BD (2017) Hyperbolic Modeling of Subthalamic Nucleus Cells to Investigate the Effect of Dopamine Depletion. Comput Intell Neurosci 2017:5472752 [Journal] [PubMed]
   Hyperbolic model (Daneshzand et al 2017) [Model]
Droste F, Lindner B (2017) Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise J. Comp. Neurosci. [Journal]
   Theory and simulation of integrate-and-fire neurons driven by shot noise (Droste & Lindner 2017) [Model]
Linaro D, Couto J, Giugliano M (2014) Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. J Neurosci Methods 230:5-19 [Journal] [PubMed]
   Phase response curves firing rate dependency of rat purkinje neurons in vitro (Couto et al 2015) [Model]
Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner W (2012) Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107:1756-75 [Journal] [PubMed]
   Extraction and classification of three cortical neuron types (Mensi et al. 2012) [Model]
Platkiewicz J, Brette R (2010) A threshold equation for action potential initiation. PLoS Comput Biol 6:e1000850 [Journal] [PubMed]
   A threshold equation for action potential initiation (Platkiewicz & Brette 2010) [Model]
Platkiewicz J, Brette R (2011) Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Comput Biol 7:e1001129 [Journal] [PubMed]
   Impact of fast Na channel inact. on AP threshold & synaptic integration (Platkiewicz & Brette 2011) [Model]
Touboul J, Brette R (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol Cybern 99:319-34 [Journal] [PubMed]
   Brette-Gerstner model (Touboul and Brette 2008) [Model]
Zeldenrust F, Chameau PJ, Wadman WJ (2013) Reliability of spike and burst firing in thalamocortical relay cells. J Comput Neurosci 35:317-34 [Journal] [PubMed]
   Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013) [Model]
(62 refs)