Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Chapelle O (2007) Training a support vector machine in the primal. Neural Comput 19:1155-78 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bakar G, Bottou L, Weston J (2005) Breaking SVM complexity with cross training Advances in neural information processing systems, Saul LK:Weiss Y:Bottou L, ed. pp.81
Bordes A, Ertekin S, Weston J, Bottou L (2005) Fast kernel classifiers with online and active learning Tech Rep NEC Research Institute
Boser BE, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifiers Proceedings Of The Fifth Annual Workshop Of Computational Learning Theory 5:144-152
Boyd S, Vandenberghe L (2004) Convex optimization
Burges CJC (1998) A tutorial on support vector machines for pattern recognition Data Mining And Knowledge Discovery 2:121-167
Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines Machine Learning 46:131-159
Chapelle O, Weston J, Bottou L, Vapnik V (2000) Vicinal risk minimization Advances in neural information processing systems, Solla SA:Leen TK:Muller KR, ed.
Collobert R, Bengio S, Bengio Y (2000) A parallel mixture of SVMS for very large scale problems Neural Comput 14:1105-1114
Cristianini N, Shawe-taylor J (2000) An introduction to support vector machines
de_Freitas N, Wang Y, Mahdaviani M, Lang D (2005) Fast Krylov methods for N-body learning Advances in neural information processing systems, Weiss Y:Scholkopf B:Platt J, ed. pp.251
Fasshauer G (2005) Meshfree methods Handbook of theoretical and computational nanotechnology, Rieth M:Schommers W, ed.
Fine S, Scheinberg K (2001) Efficient SVM training using low rank kernel representations J Mach Learn Res 2:234-264
Golub GH, van_Loan CF (1996) Matrix computations
Grandvalet Y, Canu S (2002) Adaptive scaling for feature selection in SVMS Neural information processing systems, Becker S:Thrun S:Obermayer K, ed.
Gray A, Moore A (2000) N-body problems in statistical learning Advances in neural information processing systems, Leen TK:Dietlerich T:Tresp V, ed. pp.521
Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations J Comput Physics 73:325-348
Joachims T (1999) Making large-scale SVM learning practical Advances in kernel methods-Support vector learning, Scholkpf B:Burges C:Smola A, ed.
Keerthi S, Chapelle O, DeCoste D (2006) Building support vector machines with reducing classifier complexity J Mach Learn Res 7:1493-1515
Keerthi SS, Decoste DM (2005) A modified finite Newton method for fast solution of large scale linear SVMS J Mach Learn Res 6:341-361
Kimeldorf GS, Wahba G (1970) A correspondence between Bayesian estimation on stochastic processes and smoothing by splines Annal Math Stat 41:495-502
Lang D, Klaas M, de_Freitas N (2005) Empirical testing of fast kernel density estimation algorithms Tech Rep UBC TR-2005-03, University of British Colombia
Lee YJ, Mangasarian OL (2001) RSVM: Reduced support vector machines Proc SIAM Intl Conf Data Mining
Lee YJ, Mangasarian OL (2001) SSVM: A smooth support vector machine for classification Comput Optim Appl 20:5-22
Mangasarian OL (2002) A finite Newton method for classification Optim Methods and Software 17:913-929
Ong CS (2005) Kernels: Regularization and optimization Unpublished doctoral dissertation, Australian National University
Osuna E, Freund R, Girosi F (1997) Support vector machines: Training and applications Tech Rep AIM-1602, MIT Artificial Intelligence Laboratory
Platt J (1998) Fast training of support vector machines using sequential minimal optimization Advances in kernel methods Support vector learning, Scholkopf B:Burges C:Smola A, ed.
Schaback R (1995) Creating surfaces from scattered data using radial basis functions Mathematical methods for curves and surfaces, Daehlen M:Lyche T:Schumaker L, ed. pp.477
Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond
Shen Y, Ng A, Seeger M (2006) Fast gaussian process regression using KD trees Advances in neural information processing systems, Weiss Y:Scholkopf B:Platt J, ed.
Shewchuk JR (1994) An introduction to the conjugate gradient method without the agonizing pain Tech Rep CMU-CS-94-125, Carnegie Mellon University School of Computer Science
Steinwart I (2003) Sparseness of support vector machines J Mach Learn Res 4:1071-1105
Tsang IW, Kwok JT, Cheung PM (2005) Core vector machines: Fast SVM training on very large data sets J Mach Learn Res 6:363-392
Vapnik V (1998) Statistical Learning Theory
Yang C, Duraiswami R, Davis L (2004) Efficient kernel machines using the improved fast gauss transform Advances in neural information processing systems, Thrun S:Saul LK:Scholkopf B, ed.
Zhang J, Jin R, Yang Y, Hauptmann AG (2003) Modified logistic regression:An approximation to SVM and its applications in large-scale text categorization Proc 20th Intl Conf Mach Learn
Zhu J, Hastie T (2005) Kernel logistic regression and the import vector machine J Comput Graph Stat 14:185-205
(37 refs)