Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Dyrholm M, Makeig S, Hansen LK (2007) Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG. Neural Comput 19:934-55 [PubMed]

References and models cited by this paper

References and models that cite this paper

Anemuller J, Duann JR, Sejnowski TJ, Makeig S (2004) Unraveling spatiotemporal dynamics in FMRI recordings using complex ICA Independent component analysis and blind signal separation, Puntonet CG:Prieto A, ed. pp.1103
Anemuller J, Kollmeier B (2003) Adaptive separation of acoustic sources for anechoic conditions: A constrained frequency domain approach IEEE Trans Speech And Audio Processing 39:79-95
Anemüller J, Sejnowski TJ, Makeig S (2003) Complex independent component analysis of frequency-domain electroencephalographic data. Neural Netw 16:1311-23 [Journal] [PubMed]
Attias H, Schreiner CE (1998) Blind source separation and deconvolution: the dynamic component analysis algorithm. Neural Comput 10:1373-424 [PubMed]
Baumann W, Kohler BU, Kolossa D, Orglmeister R (2001) Real time separation of convolutive mixtures 3rd Intl Conf Independent Component Analysis and Blind Signal Separation, Lee TW:Jung TP:Makeig S:Sejnowski TJ, ed. pp.65
Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129-59 [PubMed]
Belouchrani A, Karim AM, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics IEEE Trans Signal Processing 45:434-443
Cardoso JF, Pham DT (2004) Optimization issues in noisy gaussian ICA Independent component analysis and blind signal separation, Puntonet CG:Prieto A, ed. pp.41
Choi S, Amari SI, Cichocki A, Wen_Liu RW (1999) Natural gradient learning with a nonholonomic constraint for blind deconvolution of multiple channels Independent Component Analysis and Blind Signal Separation :371-376
Choi S, Cichocki A (1997) Blind signal deconvolution by spatio-temporal decorrelation and demixing Neural Networks for signal processing, Principe J:Gile L:Morgan N:Wilson E, ed. pp.426
Comon P, Moreau E, Rota L (2001) Blind separation of convolutive mixtures: A contrast based joint diagonalization approach Independent Component Analysis and Blind Source Separation, Lee TW:Jung TP:Makeig S:Sejnowski TJ, ed. pp.686
Deligne S, Gopinath R (2002) An EM algorithm for convolutive independent component analysis Neurocomputing 49:187-211
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9-21 [Journal] [PubMed]
Delorme A, Makeig S, Sejnowski TJ (2002) From single-trial EEG to brain area dynamics Neurocomputing 44:1057-1064
Douglas SC, Cichocki A, Amari S (1999) Self-whitening algorithms for adaptive equalization and deconvolution IEEE Trans Signal Processing 47:1161-1165
Dyrholm M, Hansen LK (2004) CICAAR: Convolutive ICA with an autoregressive inverse model Independent Component Analysis and Blind Signal Separation, Puntonet CG:Prieto A, ed. pp.594
Dyrholm M, Hansen LK, Wang L, Arendt-Nielsen L, Chen AC (2004) Convolutive ICA (c-ICA) captures complex spatio-temporal EEG activity Available online at http:--www.imm.dtu.dk-mad-papers-cICA eeg hbm2004.pdf
Dyrholm M, Makeig S, Hansen LK (2006) Model structure selection in convolutive mixtures Independent Component Analysis and Blind Signal Separation, Rosca J:Erdogmus D:Pripe JC:Haykin S, ed. pp.74
Efron B, Tibshirani R (1993) An Introduction To The Bootstrap
Hansen PC (2002) Deconvolution and regularization with Toeplitz matrices Numerical Algorithms 29:323-378
Jung TP, Humphries C, Lee TW, Makeig S, Mckeown MJ, Iragui V, Sejnowski TJ (1998) Extended ICA removes artifacts from electroencephalographic recordings Advances in neural information processing systems, Jordan MI:Kearns MJ:Solla SA, ed.
Jung TP, Makeig S, McKeown MJ, Bell AJ, Lee TW, Sejnowski TJ (2001) Imaging Brain Dynamics Using Independent Component Analysis. Proc IEEE Inst Electr Electron Eng 89:1107-1122 [Journal] [PubMed]
Lee TW, Bell AJ, Lambert RH (1997) Blind separation of convolved and delayed sources. Advances in Neural Information Processing Systems., Jordan MI:Kearns MJ:Solla SA, ed. pp.758
Lee TW, Bell AJ, Orglmeister R (1997) Blind source separation of real world signals International Conference Neural Networks :2129-2135
Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11:417-41 [PubMed]
Makeig S, Bell A, Jung TP, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data Advances in neural information processing systems, Touretzky D:Mozer M:Hasselmo, ed. pp.145
Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8:204-10 [Journal] [PubMed]
Makeig S, Delorme A, Westerfield M, Jung TP, Townsend J, Courchesne E, Sejnowski TJ (2004) Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol 2:e176 [Journal] [PubMed]
Makeig S, Enghoff S, Jung TP, Sejnowski TJ (2000) A natural basis for efficient brain-actuated control. IEEE Trans Rehabil Eng 8:208-11 [PubMed]
Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690-4 [Journal] [PubMed]
Mitianoudis N, Davies M (2003) Audio source separation of convolutive mixtures IEEE Trans Speech And Audio Processing 11:489-497
Moulines E, Cardoso JF, Gassiat E (1997) Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models International Conference on Acoustics, Speech, and Signal Processing :3617-3620
Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models ACM Trans Mathematical Software 27:27-57
Nielsen HB (2000) UCMINF an algorithm for unconstrained, nonlinear optimization Tech Rep IMM-REP-2000-19, Department of Mathematical Modeling,Technical University of Denmark
Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27:341-56 [Journal] [PubMed]
Parra L, Spence C (2000) Convolutive blind source separation of nonstationary sources IEEE Trans Speech Audio Process 8:320-327
Parra L, Spence C, Vries B (1997) Convolutive source separation and signal modeling with Ml International Symposium on Intelligent Systems
Parra L, Spence C, Vries BD (1998) Convolutive blind source separation based on multiple decorrelation Neural Networks for Signal Processing Proceedings :23-32
Pearlmutter BA, Parra LC (1997) Maximum likelihood blind source separation:A context-sensitive generalization of ICA Advances in neural information processing systems, Mozer MC:Jordan MI:Petsche T, ed. pp.613
Rahbar K, Reilly J (2001) Blind source separation of convolved sources by joint approximate diagonalization of cross-spectral density matrices Intl Conf Acoustics, Speech, and Signal Processing :2745-2748
Rahbar K, Reilly JP, Manton JH (2002) A frequency domain approach t oblind identification of mimo FIR systems driven by quasi-stationary signals Intl Conf Acoustics, Speech, and Signal Processing :1717-1720
Schwarz G (1978) Estimating the dimension of a model Ann Stat 6:461-464
Sun X, Douglas S (2001) A natural gradient convolutive blind source separation algorithms for speech mixtures Independent Component Analysis and Blind Source Separation, Lee TW:Jung TP:Makeig S:Sejnowski TJ, ed. pp.59
Torkkola K (1996) Blind separation of convolved sources based on information maximization. IEEE Workshop On Neural Networks For Signal Processing Kyoto, Japan :423-432
(45 refs)