Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Turner R, Sahani M (2007) A maximum-likelihood interpretation for slow feature analysis. Neural Comput 19:1022-38 [PubMed]

References and models cited by this paper

References and models that cite this paper

Attias H (1999) Independent factor analysis. Neural Comput 11:803-51 [PubMed]
Bell AJ, Sejnowski TJ (1997) The "independent components" of natural scenes are edge filters. Vision Res 37:3327-38 [PubMed]
Berkes P, Wiskott L (2005) Slow feature analysis yields a rich repertoire of complex cell properties. J Vis 5:579-602 [Journal] [PubMed]
Blaschke T, Berkes P, Wiskott L (2006) What is the relation between slow feature analysis and independent component analysis? Neural Comput 18:2495-508 [Journal] [PubMed]
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1-38
Foldiak P (1991) Learning invariance from transformation sequences Neural Comput 3:194-200
Ghahramani Z, Roweis ST (1999) Learning nonlinear dynamical systems using an EM algorithm Advances in neural information processing systems, Kearns MS:Solla SA:Sohn DA, ed. pp.599
Grimes DB, Rao RP (2005) Bilinear sparse coding for invariant vision. Neural Comput 17:47-73 [Journal] [PubMed]
Hinton G (1989) Connectionist learning procedures Art Intell 40:185-234
Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14:1771-800 [Journal] [PubMed]
Hurri J, Hyvärinen A (2003) Temporal and spatiotemporal coherence in simple-cell responses: a generative model of natural image sequences. Network 14:527-51 [PubMed]
Hyvärinen A, Hurri J, Väyrynen J (2003) Bubbles: a unifying framework for low-level statistical properties of natural image sequences. J Opt Soc Am A Opt Image Sci Vis 20:1237-52 [PubMed]
Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999) An introduction to variational methods for graphical models Mach Learn 37:183-223
Karklin Y, Lewicki MS (2005) A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput 17:397-423 [Journal] [PubMed]
Kayser C, Körding KP, König P (2003) Learning the nonlinearity of neurons from natural visual stimuli. Neural Comput 15:1751-9 [Journal] [PubMed]
Körding KP, Kayser C, Einhäuser W, König P (2004) How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol 91:206-12 [Journal] [PubMed]
Mackay DJC (1999) Maximum likelihood and covariant algorithms for independent component analysis Unpublished manuscript. Available online at
Miskin J (2000) Ensemble learning for independent components analysis Unpublished doctoral dissertation, Cambridge University
Mitchison G (1991) Removing time variation with the anti-Hebbian differential synapse Neural Comput 3:312-320
Neal RM, Hinton GE (1998) A new view of the EM algorithm that justifies incremental, sparse and other variants Learning in graphical models, Jordan MI, ed. pp.355
Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-9 [Journal] [PubMed]
Osindero S, Welling M, Hinton GE (2005) Topographic Product Models Applied to Natural Scene Statistics Neural Comput 18:381-414
Pearlmutter BA, Parra LC (1997) Maximum likelihood blind source separation:A context-sensitive generalization of ICA Advances in neural information processing systems, Mozer MC:Jordan MI:Petsche T, ed. pp.613
Roweis S, Ghahramani Z (1999) A unifying review of linear gaussian models. Neural Comput 11:305-45 [PubMed]
Sarela J, Valpola H (2005) Denoising source separation J Machine Learning Res 6:233-272
Stone JV (1996) Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Comput 8:1463-92 [PubMed]
Tenenbaum JB, Freeman WT (2000) Separating style and content with bilinear models. Neural Comput 12:1247-83 [PubMed]
Tipping M, Bishop C (1999) Probabilistic principal component analysis J Roy Stat Soc B 61:611-622
Wiskott L, Sejnowski TJ (2002) Slow feature analysis: unsupervised learning of invariances. Neural Comput 14:715-70 [Journal] [PubMed]
(29 refs)