Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Szita I, Lörincz A (2006) Learning Tetris using the noisy cross-entropy method. Neural Comput 18:2936-41 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bertsekas D, Tsitsiklis J (1996) Neuro-dynamic programming
Bohm N, Kokai G, Mandl S (2004) Evolving a heuristic function for the game of Tetris Proc Lernen Wissensentdeckung und Adaptivitat, Scheffer T, ed. pp.118
de_Boer P, Kroese D, Mannor S, Rubinstein R (2004) A tutorial on the cross entropy method Ann Operations Res 134:19-67
Demaine ED, Hohenberger S, Liben-nowell D (2003) Tetris is hard, even to approximate Proc 9th Intl Computing and Combinatorics Conf :351-363
Fahey CP (2003) Tetris AI Available online at http:--www.colinfahey.com
Farias VF, van_Roy B (2006) Tetris: A study of randomized constraint sampling Probabilistic and randomized methods for design under uncertainty, Calafiore G:Dabbene F, ed.
Kakade S (2001) A natural policy gradient Advances in neural information processing systems, Dietterich TG:Becker S:Ghahramani Z, ed. pp.1531
Lagoudakis MG, Parr R, Littman ML (2002) Least-squares methods in reinforcement learning for control SETN Proc 2nd Hellenic Conf AI :249-260
Mannor S, Rubinstein RY, Gat Y (2003) The cross-entropy method for fast policy search Proc Intl Conf Mach Learn :512-519
Menache I, Mannor S, Shimkin N (2005) Basis function adaption in temporal difference reinforcement learning Ann Operat Res 134:215-238
Ramon J, Driessens K (2004) On the numeric stability of gaussian processes regression for relational reinforcement learning Workshop on Relational Reinforcement Learning :10-14
(11 refs)