Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Schwartz O, Sejnowski TJ, Dayan P (2006) Soft mixer assignment in a hierarchical generative model of natural scene statistics. Neural Comput 18:2680-718 [PubMed]

References and models cited by this paper

References and models that cite this paper

Adams NJ, Williams CKI (2003) Dynamic trees for image modelling Image Vision Computing 10:865-877
Andrews D, Mallows C (1974) Scale mixtures of normal distributions J Royal Stat Soc 36:99-102
ATTNEAVE F (1954) Some informational aspects of visual perception. Psychol Rev 61:183-93 [PubMed]
Barlow HB (1961) Possible principles underlying the transformations of sensory messages Sensory Communication, Rosenblith WA, ed. pp.217
Becker S (1999) Implicit learning in 3D object recognition: the importance of temporal context. Neural Comput 11:347-74 [PubMed]
Bell AJ, Sejnowski TJ (1997) The "independent components" of natural scenes are edge filters. Vision Res 37:3327-38 [PubMed]
Bollerslev T, Engle RF, Nelson DB (1994) ARCH models Handbook of Econometrics, Engle RF:McFadden DL, ed.
Brehm H, Stammler W (1987) Description and generation of spherically invariant speech-model signals Signal Process 12:119-141
Buccigrossi RW, Simoncelli EP (1999) Image compression via joint statistical characterization in the wavelet domain. IEEE Trans Image Process 8:1688-701 [Journal] [PubMed]
De_bonet J, Viola P (1997) A non-parametric multi-scale statistical model for natural images Advances in neural information processing systems, Mozer M:Jordan M:Petsche T, ed.
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1-38
Einhäuser W, Kayser C, König P, Körding KP (2002) Learning the invariance properties of complex cells from their responses to natural stimuli. Eur J Neurosci 15:475-86 [PubMed]
Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379-94 [PubMed]
Field DJ (1994) What is the goal of sensory coding? Neural Comput 6:559-601
Foldiak P (1991) Learning invariance from transformation sequences Neural Comput 3:194-200
Fukushima K (1980) Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193-202 [PubMed]
Geisler WS, Perry JS, Super BJ, Gallogly DP (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vision Res 41:711-24 [PubMed]
Grenander U, Srivastava A (2002) Probability models for clutter in natural images IEEE Trans Patt Anal And Mach Intel 23:423-429
Hinton GE, Ghahramani Z (1997) Generative models for discovering sparse distributed representations. Philos Trans R Soc Lond B Biol Sci 352:1177-90 [Journal] [PubMed]
Hinton GE, Ghahramani Z, Teh YW (1999) Learning to parse images Advances in neural information processing systems, Kearns MS:Solla SA:Cohn DA, ed. pp.463
Hoyer PO, Hyvärinen A (2002) A multi-layer sparse coding network learns contour coding from natural images. Vision Res 42:1593-605 [PubMed]
Huang J, Mumford D (1999) Statistics of natural images and models Proc IEEE Conf Computer Vision and Pattern Recognition
HUBEL DH, WIESEL TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol 160:106-54 [PubMed]
Hyvarinen A, Hoyer P (2000) Emergence of topography and complex cell properties from natural images using extensions of ICA Advances in neural information processing systems, Solla SA:Leen TK:Muller KR, ed. pp.827
Hyvärinen A, Hoyer P (2000) Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Comput 12:1705-20 [PubMed]
Hyvärinen A, Hurri J, Väyrynen J (2003) Bubbles: a unifying framework for low-level statistical properties of natural image sequences. J Opt Soc Am A Opt Image Sci Vis 20:1237-52 [PubMed]
Jacobs RA, Jordan MI, Barto AG (1991) Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks Cognitive Sci 15:219-250
Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts Neural Comput 3:79-87
Karklin Y, Lewicki MS (2003) Learning higher-order structures in natural images. Network 14:483-99 [PubMed]
Karklin Y, Lewicki MS (2003) A Model for learning variance components of natural images Advances in neural information processing systems, Becker S:Thrun S:Obermayer K, ed. pp.1367
Karklin Y, Lewicki MS (2005) A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput 17:397-423 [Journal] [PubMed]
Körding KP, Kayser C, Einhäuser W, König P (2004) How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol 91:206-12 [Journal] [PubMed]
Lee JS (1980) Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell 2:165-8 [PubMed]
Li Z (2002) A saliency map in primary visual cortex. Trends Cogn Sci 6:9-16 [PubMed]
Li Z, Atick JJ (1994) Toward a theory of the striate cortex. Neural Comput 6:127-46
MacKay DJ (2003) Information Theory, Inference and Learning Algorithms
Mackay DM (1956) The epistemological problem for automata Automata Studies, Shannon CE:McCarthy J, ed. pp.235
Nadal JP, Parga N (1997) Redundancy reduction and independent component analysis: Conditions on cumulants and adaptive approaches Neural Comput 9:1421-1456
Neisser U (1967) Cognitive Psychology
Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-9 [Journal] [PubMed]
Osindero S, Welling M, Hinton GE (2005) Topographic Product Models Applied to Natural Scene Statistics Neural Comput 18:381-414
Park HJ, Lee TW (2005) Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution Advances in neural information processing systems, Saul LK:Weiss Y:Bottou L, ed. pp.1041
Portilla J, Simoncelli EP (2003) Image restoration using gaussian scale mixtures in the wavelet domain Proc 10th IEEE Intl Conf Image Proc 2:965-968
Portilla J, Strela V, Wainwright M, Simoncelli E (2001) Adaptive Wiener Denoising using a gaussian scale mixture model in the wavelet domain Proc 8th IEEE Intl Conf Image Proc :37-40
Portilla J, Strela V, Wainwright MJ, Simoncelli EP (2003) Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process 12:1338-51 [Journal] [PubMed]
Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79-87 [Journal] [PubMed]
Rao RPN, Olshausen BA, Lewicki MS (2002) Probabilistic models of the brain: Perception and neural function
Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019-25 [Journal] [PubMed]
Romberg J, Choi H, Baraniuk R (1999) Bayesian wavelet domain image modeling using hidden Markov trees Proc IEEE Intl Conf Image Proc
Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10:1056-68 [Journal] [PubMed]
Ruderman DL, Bialek W (1994) Statistics of natural images: Scaling in the woods. Phys Rev Lett 73:814-817 [Journal] [PubMed]
Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque v1 receptive fields. Neuron 46:945-56 [Journal] [PubMed]
Sallee P, Olshausen BA (2003) Learning sparse multiscale image representations Advances in neural information processing systems, Becker S:Thrun S:Obermayer K, ed. pp.1327
Samaria F, Harter A (1994) Parametrisation of a stochastic model for human face identification Paper presented at the Second IEEE Workshop on Applications of Computer Vision
Schwartz O, Sejnowski TJ, Dayan P (2005) Assignment of multiplicativemixtures in natural images Advancesin Neural Information Processing Systems, Saul LK:Weiss Y:Bottou L, ed. pp.1217
Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control. Nat Neurosci 4:819-25 [Journal] [PubMed]
Shannon CE (1948) The mathematical theory of communication Bell Syst Tech J 27:379
Shannon CE, Weaver W (1949) Nonlinear problems in random theory
Simoncelli E (1997) Statistical models for images: Compression, restoration and synthesis Proceedings of the 31st Asilomar Conference on Signals, Systems and Computers
Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ (1992) Shiftable multi-scale transforms IEEE Trans Information Theory 38:587-607
Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193-216 [Journal] [PubMed]
Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci 216:427-59 [Journal] [PubMed]
Strela V, Portilla J, Simoncelli E (2000) Image denoising using a local gaussian scale mixture model in the wavelet domain Proc SPIE 45th Annual Meeting, Aldroubi A:Laine AF:Unser MA, ed.
Touryan J, Lau B, Dan Y (2002) Isolation of relevant visual features from random stimuli for cortical complex cells. J Neurosci 22:10811-8 [PubMed]
Turiel A, Mato G, Parga N, Nadal JP (1998) The self-similarity properties of natural images resemble those of turbulent flows Phys Rev Lett 80:1098-1101
van Hateren JH, van der Schaaf A (1998) Independent component filters of natural images compared with simple cells in primary visual cortex. Proc Biol Sci 265:359-66 [Journal] [PubMed]
Wainwright MJ, Simoncelli EP (2000) Scale mixtures of gaussians and the statistics of natural images Advances in neural information processing systems, Solla SA:Leen TK:Muller KR, ed. pp.855
Wainwright MJ, Simoncelli EP, Willsky AS (2001) Random cascades on wavelet trees and their use in modeling and analyzing natural imagery Appl Computational Harmonic Anal 11:89-123
Wallis G, Baddeley R (1997) Optimal, unsupervised learning in invariant object recognition. Neural Comput 9:883-94 [PubMed]
Wegmann B, Zetzsche C (1990) Statistical dependence between orientation filter outputs used in an human vision based image code Proc SPIE Visual Comm Image Processing, Kunt M, ed. pp.909
Williams CKI, Adams NJ (1999) Dynamic trees Advances in neural information processing systems, Kearns MS:Solla SA:Cohn DA, ed. pp.634
Wiskott L, Sejnowski TJ (2002) Slow feature analysis: unsupervised learning of invariances. Neural Comput 14:715-70 [Journal] [PubMed]
Zetzsche C, Nuding U (2006) Nonlinear and higher-order approaches to the encoding of natural scenes. Network 16:191-221
Zetzsche C, Wegmann B, Barth E (1993) Nonlinear aspects of primary vision:Entropy reduction beyond decorrelation Intl Symposium Society for Information Display, Morreale J, ed. pp.933
(74 refs)