Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Dayan P (2006) Images, frames, and connectionist hierarchies. Neural Comput 18:2293-319 [PubMed]

References and models cited by this paper

References and models that cite this paper

Amit Y, Mascaro M (2003) An integrated network for invariant visual detection and recognition. Vision Res 43:2073-88 [PubMed]
Amit Y, Trouve A (2005) POP: Patchwork of parts models for object recognition Unpublished technical report, Available online from http:--galton.uchicago.edu-amit-Papers-pop.pdf
Beymer D, Poggio T (1996) Image representations for visual learning. Science 272:1905-9 [PubMed]
Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces Siggraph99 :187-194
Bridgeman B, van_der_Heijden AHC, Velichkovsky B (1994) Visual stability and saccadic eye movements Behav Brain Sci 17:247-258
Burl M, Weber M, Perona P (1998) A probabilistic approach to object recognition using local photometry and global geometry
Burl MC, Leung TK, Perona P (1995) Face localization via shape statistics Proc Intl Workshop Automatic Face and Gesture Recognition, Bichsel M, ed. pp.154
Connor CE, Gallant JL, Preddie DC, Van Essen DC (1996) Responses in area V4 depend on the spatial relationship between stimulus and attention. J Neurophysiol 75:1306-8 [Journal] [PubMed]
Crandall D, Felzenszwalb P, Huttenlocher D (2005) Spatial priors for part based recognition using statistical models Proc Intl Conf Computer Vision and Pattern
Dayan P, Hinton GE, Neal RM, Zemel RS (1995) The Helmholtz machine. Neural Comput 7:889-904 [PubMed]
De_Lathauwer L (1997) Signal processing based on multilinear algebra Unpublished doctoral dissertation, Katholieke Universitiet Leuven
De_Lathauwer L, Vandewalle J (2004) Dimensionality reduction in higher-order signal processing and rank-(R1, R2, . . . , RN) reduction in multilinear algebra Linear Algebra Applications 391:31-55
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1-38
Deneve S, Pouget A (2003) Basis functions for object-centered representations. Neuron 37:347-59 [PubMed]
Dolan CP (1989) Tensor manipulation networks: Connectionist and symbolic approaches to comprehension, learning and planning Tech Rep UCLA-AI-89-06
Edelman S (1999) Representation and recognition in vision
Fei-fei L, Fergus R, Perona P (2003) A Bayesian approach to unsupervised one-shot learning of object categories Paper Presented At The International Conference On Computer Vision
Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning Proc of the IEEE Conf on Computer Vision and Pattern Recognition
Fischler MA, Elschlager RA (1973) The representation and matching of pictorial structures IEEE Trans Computers 22:67-92
Gayler RW (1998) Multiplicative binding, representation operators and analogy Advances in analogy research: Integration of theory and data from the cognitive, computational, and neural sciences, Holyoak K:Gentner D, ed.
Grenander U (1981) Lectures in pattern theory I, II and III: Pattern analysis, pattern synthesis and regular structures
Grimes DB, Rao RP (2005) Bilinear sparse coding for invariant vision. Neural Comput 17:47-73 [Journal] [PubMed]
Hinton GE (1989) Learning distributed representations of concepts Parallel distributed processing: Implications for psychology and neurobiology, Morris RGM, ed. pp.46
Hinton GE (1990) Mapping part-whole hierarchies into connectionist networks Art Intell 46:47-75
Hinton GE (1991) Connectionist symbol processing
Hinton GE, Dayan P, Revow M (1997) Modeling the manifolds of images of handwritten digits. IEEE Trans Neural Netw 8:65-74 [Journal] [PubMed]
Hinton GE, Ghahramani Z (1997) Generative models for discovering sparse distributed representations. Philos Trans R Soc Lond B Biol Sci 352:1177-90 [Journal] [PubMed]
Hinton GE, Zemel RS (1994) Autoencoders, minimum description length, and Helmholtz free energy Advances in neural information processing systems, Cowan J:Tesauro G:Alspector J, ed.
Kanerva P (1996) Binary spatter-coding of ordered K-tuples Proc ICANN, von_der_Malsburg C:von_Seelen W:Vorbruggen JC:Sendhoff B, ed. pp.869
Koenderink JJ, Van_doorn AJ (1997) The generic bilinear calibration estimation problem Intl J Computer Vision 23:217-234
Kolda TG (2001) Orthogonal tensor decompositions SIAM J Matrix Anal Appl 23:243-255
Koller D, Pfeffer A (1998) Probabilistic frame-based systems Proc 15th Natl Conf Artif Intell :580-587
Liebe B, Schiele B (2003) Interleaved object categorization and segmentation British Machine Vision Conference
Liebe B, Schiele B (2004) Scale invariant object categorization using a scale adaptive mean-shift search DAGM Ann Pattern Recognition Symposium :145-153
Linsker R (1988) Self-organization in a perceptual network Computer 2:105-117
Mackay DM (1956) The epistemological problem for automata Automata Studies, Shannon CE:McCarthy J, ed. pp.235
Milch B, Marthi B, Russell S (2004) BLOG: Relational modeling with unknown objects Proc ICML Workshop on Statistical Relational Learning
Mjolsness E (1990) Bayesian inference on visual grammars by neural nets that optimize Tech Rep YALEU-DCS-TR-854 Computer Science Department Yale University
Mumford D (1994) Neuronal architectures for pattern-theoretic problems Large scale neuronal theories of the brain, Koch C:Davis JL, ed. pp.125
Neisser U (1967) Cognitive Psychology
Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci 13:4700-19 [PubMed]
Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-9 [Journal] [PubMed]
Paccanaro A, Hinton GE (2001) Learning distributed representation of concepts using linear relational embedding IEEE Trans Knowledge and Data Engineering 13:232-245
Plate TA (1995) Holographic reduced representations. IEEE Trans Neural Netw 6:623-41 [Journal] [PubMed]
Plate TA (2003) Holographic reduced representations
Poggio T (1990) A theory of how the brain might work. Cold Spring Harb Symp Quant Biol 55:899-910 [PubMed]
Pollack JB (1990) Recursive distributed representations Artif Intell 46:77-105
Pouget A, Dayan P, Zemel RS (2000) Computation with population codes Nature Rev Neurosci 1:125-132
Pouget A, Sejnowski TJ (1997) Spatial transformations in the parietal cortex using basis functions. J Cogn Neurosci 9:222-37 [Journal] [PubMed]
Rachkovskij DA, Kussul EM (2001) Binding and normalization of binary sparse distributed representations by context-dependent thinning Neural Comput 13:411-452
Rao RPN, Olshausen BA, Lewicki MS (2002) Probabilistic models of the brain: Perception and neural function
Revow M, Williams CKI, Hinton GE (1996) Using generative models for handwritten digit recognition IEEE Trans Pattern Analysis and Machine Intelligence 18:592-606
Riesenhuber M, Dayan P (1996) Neural models for part-whole hierarchies Advances in neural information processing systems, Mozer MC:Jordan MI:Petsche T, ed. pp.17
Riesenhuber M, Jarudi I, Gilad S, Sinha P (2004) Face processing in humans is compatible with a simple shape-based model of vision. Proc Biol Sci 271 Suppl 6:S448-50
Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019-25 [Journal] [PubMed]
Salinas E, Abbott LF (1997) Invariant visual responses from attentional gain fields. J Neurophysiol 77:3267-72 [Journal] [PubMed]
Schiele B, Crowley JL (1996) Probabilistic object recognition using multidimensional receptive field histograms Intl Conf Pattern Recognition
Schiele B, Crowley JL (2000) Recognition without correspondence using multidimensional receptive field histograms Intl J Computer Vision 36:31-50
Schneiderman H, Kanade T (2004) Object detection using the statistics of parts Intl J Computer Vision 56:151-177
Smolensky P (1990) Tensor product variable binding and the representation of symbolic structures in connectionist systems Artif Intell 46:159-216
Sperduti A (1994) Labeling RAAM Connection Science 6:429-459
Sudderth EB, Torralba A, Freeman WT, Willsky AS (2005) Learning hierarchical models of scenes, objects and parts Intl Conf Comput Vis 2:1331-1338
Tenenbaum JB, Freeman WT (2000) Separating style and content with bilinear models. Neural Comput 12:1247-83 [PubMed]
Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31:279-311 [PubMed]
Turk M, Pentland A (1991) Eigen faces for recognition J Cogn Neurosci 3:71-86
Vasilescu MAO, Terzopoulos D (2002) Multilinear Analysis of Image Ensembles: Tensor Faces Proc European Conf Comput Vis :447-460
Vasilescu MAO, Terzopoulos D (2003) Multilinear subspace analysis for image ensembles Proc Computer Vision and Pattern Recognition Conf 2:93-99
Vasilescu MAO, Terzopoulos D (2005) Multilinear independent components analysis Proc Computer Vision and Pattern Recognition Conf 2:547-553
Vetter T, Poggio T (1997) Linear object classes and image synthesis froma single example image IEEE Trans Pattern Analysis and Machine Intelligence 19:733-742
von_der_Malsburg C (1988) Pattern recognition by labelled graph matching Neural Netw 1:141-148
(70 refs)