Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |
Baglama J (2004) The irbleigs Matlab program for computing a few eigen values and eigenvectors of a large sparse hermitian matrix Available online at http:--www.math.uri.edu-jbaglama- Blake CL, Merz CJ (1998) UCI Repository of Machine Learning Databases Golub GH, van_Loan CF (1996) Matrix computations Hoegaerts L, De Lathauwer L, Goethals I, Suykens JA, Vandewalle J, De Moor B (2007) Efficiently updating and tracking the dominant kernel principal components. Neural Netw 20:220-9 [Journal] [PubMed] Hoegaerts L, De_Lathauwer L, Suykens JAK, Vandewalle J (2004) Efficiently updating and tracking the dominant kernel eigen space Proc 16th Intl Symposium Math Theory Networks and Systems Kim K, Franz MO, Scholkopf B (2003) Kernel Hebbian algorithm for iterative kernel principal component analysis Tech Rep 109 Max Planck Institute Biologische Kybernetik Larsen RM (2004) Propack software for large and sparse SVD calculations Available online at http:--sun.stanford.edu-rmunk-PROPACK-index.html Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis and an algorithm Advances In Neural Information Processing Systems, Becker S:Dietterich TG:Ghahramani Z, ed. Rosipal R, Girolami M (2001) An expectation-maximization approach to nonlinear component analysis Neural Comput 13:505-510 Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem Neural Comput 10:1299-1319 Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond Suykens JAK, van_Gestel T, De_Bradanter J, De_Moor B, Vandewalle J (2002) Least squares support vector machines Weiss Y (1999) Segmentation using eigen vectors: A unifying view Proc IEEE Intl Conf Computer Vision :975-982 |