Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Gins G, Smets IY, Van Impe JF (2008) Efficient tracking of the dominant eigenspace of a normalized kernel matrix. Neural Comput 20:523-54 [PubMed]

References and models cited by this paper

References and models that cite this paper

Baglama J (2004) The irbleigs Matlab program for computing a few eigen values and eigenvectors of a large sparse hermitian matrix Available online at
Blake CL, Merz CJ (1998) UCI Repository of Machine Learning Databases
Golub GH, van_Loan CF (1996) Matrix computations
Hoegaerts L, De Lathauwer L, Goethals I, Suykens JA, Vandewalle J, De Moor B (2007) Efficiently updating and tracking the dominant kernel principal components. Neural Netw 20:220-9 [Journal] [PubMed]
Hoegaerts L, De_Lathauwer L, Suykens JAK, Vandewalle J (2004) Efficiently updating and tracking the dominant kernel eigen space Proc 16th Intl Symposium Math Theory Networks and Systems
Kim K, Franz MO, Scholkopf B (2003) Kernel Hebbian algorithm for iterative kernel principal component analysis Tech Rep 109 Max Planck Institute Biologische Kybernetik
Larsen RM (2004) Propack software for large and sparse SVD calculations Available online at
Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis and an algorithm Advances In Neural Information Processing Systems, Becker S:Dietterich TG:Ghahramani Z, ed.
Rosipal R, Girolami M (2001) An expectation-maximization approach to nonlinear component analysis Neural Comput 13:505-510
Scholkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem Neural Comput 10:1299-1319
Scholkopf B, Smola AJ (2001) Learning with kernels: Support vector machines, regularization, optimization, and beyond
Weiss Y (1999) Segmentation using eigen vectors: A unifying view Proc IEEE Intl Conf Computer Vision :975-982
(13 refs)