Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Gao J (2008) Robust L1 principal component analysis and its Bayesian variational inference. Neural Comput 20:555-72 [PubMed]

References and models cited by this paper

References and models that cite this paper

Archambeau C (2005) Probabilistic models in noisy environments and their application to a visual prosthesis for the blind Unpublished doctoral dissertation, Universite Catholique de Louvain
Archambeau C, Delannay N, Verleysen M (2006) Robust probabilistic projections Proc 23rd Intl Conf Mach Learn
Baccini A, Besse P, deFalguerolles A (1996) A L1-norm PCA and a heuristic approach Ordinal and symbolic data analysis, Diday E:Lechevalier Y:Opitz O, ed. pp.359
Black MJ, Jepson A (1996) EigenTracking: Robust matching and tracking of articulated objects using a view-based representation Proceedings of the Fourth European Conference on Computer Vision, ECCV96, Buxton B:Cipolla R, ed. pp.329
de_la_Torre F, Black M (2001) Robust principal component analysis for computer vision Intl Conf Computer Vision 52:362-369
de_la_Torre F, Black M (2003) A framework for robust subspace learning Intl J Computer Vision 54:117-142
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1-38
Ding C, Zhou D, He X, Zha H (2006) R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization Proc 23rd Intl Conf Mach Learn
Gao J, Gunn S, Kandola J (2002) Adapting kernels by variational approach in SVM Lecture Notes On Artificial Intelligence, McKay B:Slaney J, ed. pp.395
Ghahramani Z, Beal M (2000) Variational inference for Bayesian mixtures of factor analysers Advances in neural information processing systems, Solla SA:Leen TK:Muller KR, ed. pp.449
Guo Y, Gao JB, Kwan PW (2006) Twin measure embedding: A unified framework for visualizing non-vectorial data in low dimensional spaces Research Rep Charles Sturt University
Irani M (1999) Multi-frame optical flow estimation using subspace constraints Proc Intl Conf Computer Vision
Jolliffe IT (2002) Principal component analysis (2nd ed)
Ke Q, Kanade T (2001) A subspace approach to layer extraction Proc CVPR 1:255-262
Ke Q, Kanade T (2005) Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming Proc CVPR 1:739-746
Khan Z, Dellaert F (2004) Robust generative subspace modelling: The subspace t distribution Tech Rep GIT-GVU-04-11 Georgia Institute of Technology
Neal RM, Hinton GE (1998) A new view of the EM algorithm that justifies incremental, sparse and other variants Learning in graphical models, Jordan MI, ed. pp.355
Ng A (2004) Feature selection, L1 vs. L2 regularization, and rotational invariance Proc Intl Conf Mach Learn
Peel D, Mclachlan G (2000) Robust mixture modelling using the t distribution Statistics And Computing 10:339-348
Pontil M, Mukherjee S, Girosi F (1998) On the noise model of support vector machine regression AI Memo 1651 AI Laboratory, MIT
Ridder DD, Franc V (2003) Robust subspace mixture models using t-distributions BMVC 2003: Proc 14th Brit Mach Vision Conf, Harvey R:Bangham A, ed. pp.319
Ruymagaart F (1981) A robust principal component analysis J Multivariate Anal 11:485-497
Tibshirani R (1996) Regression shrinkage and selection via the LASSO J Roy Stat Soc B 58:267-288
Tipping M, Bishop C (1999) Probabilistic principal component analysis J Roy Stat Soc B 61:611-622
Tipping M, Lawrence N (2005) Variational inference for Student-t models: Robust Bayesian interpolation and generalized component analysis Neurocomputing 69:123-141
Tipping ME, Bishop CM (1999) Mixtures of probabilistic principal component analyzers. Neural Comput 11:443-82 [PubMed]
Tomasi C, Kanade T (1992) Shape and motion from image streams under orthography: A factorization method Intl J Computer Vision 9:137-154
Turk M, Pentland A (1991) Eigen faces for recognition J Cogn Neurosci 3:71-86
Verbeek J (2006) Learning nonlinear image manifolds by global alignment of local linear models. IEEE Trans Pattern Anal Mach Intell 28:1236-50 [Journal] [PubMed]
Verbeek J, Roweis S, Vlassis N (2004) Nonlinear CCA and PCA by alignment of local models Advances in neural information processing systems, Thrun S:Saul LK:Scholkopf B, ed.
Zou H, Hastie T, Tibshirani R (2004) Sparse principal component analysis Tech Rep Stanford University Statistics Department
(31 refs)