Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Hirschberg B, Maylie J, Adelman JP, Marrion NV (1998) Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J Gen Physiol 111:565-81 [PubMed]

References and models cited by this paper

References and models that cite this paper

Anwar H, Hong S, De Schutter E (2012) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum 11:681-93 [Journal] [PubMed]
   Controlling KCa channels with different Ca2+ buffering models in Purkinje cell (Anwar et al. 2012) [Model]
Anwar H, Roome CJ, Nedelescu H, Chen W, Kuhn B, De Schutter E (2014) Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models. Front Cell Neurosci 8:168 [Journal] [PubMed]
   Calcium dynamics depend on dendritic diameters (Anwar et al. 2014) [Model]
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P (2017) T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells eLife [Journal]
   Mature and young adult-born dentate granule cell models (T2N interface) (Beining et al. 2017) [Model]
   GC model (Beining et al 2017) [Model]
Gillies A, Willshaw D (2006) Membrane channel interactions underlying rat subthalamic projection neuron rhythmic and bursting activity. J Neurophysiol 95:2352-65 [Journal] [PubMed]
   Rat subthalamic projection neuron (Gillies and Willshaw 2006) [Model]
G√ľnay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476-91 [Journal] [PubMed]
   Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008) [Model]
Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH (2017) Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 117:1969-1986 [Journal] [PubMed]
   Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017) [Model]
Johnson MD, McIntyre CC (2008) Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J Neurophysiol 100:2549-63 [Journal] [PubMed]
   GPi/GPe neuron models (Johnson and McIntyre 2008) [Model]
Meyer-Hermann ME (2007) The electrophysiology of the beta-cell based on single transmembrane protein characteristics. Biophys J 93:2952-68 [Journal] [PubMed]
Peron S, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron. Nat Neurosci 12:318-26 [Journal] [PubMed]
   Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009) [Model]
Schultheiss NW, Edgerton JR, Jaeger D (2010) Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. J Neurosci 30:2767-82 [Journal] [PubMed]
   GP Neuron, somatic and dendritic phase response curves (Schultheiss et al. 2011) [Model]
Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D'Angelo E (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Front Cell Neurosci 1:2 [Journal] [PubMed]
   Cerebellar Golgi cell (Solinas et al. 2007a, 2007b) [Model]
Stanley DA, Bardakjian BL, Spano ML, Ditto WL (2011) Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. J Comput Neurosci 31:647-66 [Journal] [PubMed]
   CA1 pyramidal: Stochastic amplification of KCa in Ca2+ microdomains (Stanley et al. 2011) [Model]
Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]
   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]
Tarfa RA, Evans RC, Khaliq ZM (2017) Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations. J Neurosci 37:3311-3330 [Journal] [PubMed]
   VTA dopamine neuron (Tarfa, Evans, and Khaliq 2017) [Model]
(15 refs)