Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||
Appleby PA, Elliott T (2005) Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural Comput 17:2316-36 [Journal] [PubMed] Ashhad S, Narayanan R (2013) Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 591:1645-69 [Journal] [PubMed]
Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Frégnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [Journal] [PubMed]
Bianchi D, De Michele P, Marchetti C, Tirozzi B, Cuomo S, Marie H, Migliore M (2014) Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit. Hippocampus 24:165-77 [Journal] [PubMed]
Bohte SM, Mozer MC (2007) Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput 19:371-403 [Journal] [PubMed] Franks KM, Sejnowski TJ (2002) Complexity of calcium signaling in synaptic spines. Bioessays 24:1130-44 [Journal] [PubMed] Hosaka R, Araki O, Ikeguchi T (2008) STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural Comput 20:415-35 [Journal] [PubMed] Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88:507-13 [Journal] [PubMed] Karmarkar UR, Najarian MT, Buonomano DV (2002) Mechanisms and significance of spike-timing dependent plasticity. Biol Cybern 87:373-82 [Journal] [PubMed] Lumsden A, Chapman S, Schubert F, Toole L, Mayford M, Hamann S, Reber PJ, Häusser M, Murthy VN, Wood JN, Liman ER, Filbin MT, Qiu J, Ashe J, Chafee M, Goodwin S, Kyriacou B, Kempermann G, Winkler J (2001) Neurobiology. Curr Opin Neurobiol 11:1-9 [PubMed] Masuda N, Aihara K (2004) Self-organizing dual coding based on spike-time-dependent plasticity. Neural Comput 16:627-63 [Journal] [PubMed] Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. J Comput Neurosci 22:327-45 [Journal] [PubMed] Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16:595-625 [Journal] [PubMed] Shen YS, Gao H, Yao H (2005) Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. J Comput Neurosci 18:25-39 [Journal] [PubMed] Teramae JN, Fukai T (2005) A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory J Comput Neurosci 18:105-121 [Journal] [PubMed] Urakubo H, Aihara T, Kuroda S, Watanabe M, Kondo S (2004) Spatial localization of synapses required for supralinear summation of action potentials and EPSPs. J Comput Neurosci 16:251-65 [Journal] [PubMed] Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed] Yu X, Shouval HZ, Knierim JJ (2008) A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. J Neurophysiol 100:983-92 [Journal] [PubMed] Zhou YD, Acker CD, Netoff TI, Sen K, White JA (2005) Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102:19121-5 [Journal] [PubMed] |