Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J Neurosci 21:1033-8 [PubMed]

References and models cited by this paper

References and models that cite this paper

Baladron J, Nambu A, Hamker FH (2019) The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study. Eur J Neurosci 49:754-767 [Journal] [PubMed]
Corbit VL, Whalen TC, Zitelli KT, Crilly SY, Rubin JE, Gittis AH (2016) Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 36:5556-71 [Journal] [PubMed]
   Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016) [Model]
Fountas Z, Shanahan M (2017) The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 12:e0189109 [Journal] [PubMed]
   Cortical oscillations and the basal ganglia (Fountas & Shanahan 2017) [Model]
Fujita T, Fukai T, Kitano K (2012) Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron. J Comput Neurosci 32:539-53 [Journal] [PubMed]
   Phase response curve of a globus pallidal neuron (Fujita et al. 2011) [Model]
Gillies A, Willshaw D (2006) Membrane channel interactions underlying rat subthalamic projection neuron rhythmic and bursting activity. J Neurophysiol 95:2352-65 [Journal] [PubMed]
   Rat subthalamic projection neuron (Gillies and Willshaw 2006) [Model]
Hahn PJ, McIntyre CC (2010) Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. J Comput Neurosci 28:425-41 [Journal] [PubMed]
   Basal ganglia network model of subthalamic deep brain stimulation (Hahn and McIntyre 2010) [Model]
Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921-42 [Journal] [PubMed]
   Spiking neuron model of the basal ganglia (Humphries et al 2006) [Model]
Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW (2013) Cortical information flow in Parkinson's disease: a composite network/field model. Front Comput Neurosci 7:39 [Journal] [PubMed]
   Composite spiking network/neural field model of Parkinsons (Kerr et al 2013) [Model]
Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26:3567-83 [Journal] [PubMed]
   A dynamical model of the basal ganglia (Leblois et al 2006) [Model]
Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S (2019) A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 13:11 [Journal] [PubMed]
   Excitotoxic loss of dopaminergic cells in PD (Muddapu et al 2019) [Model]
Pavlides A, Hogan SJ, Bogacz R (2015) Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease. PLoS Comput Biol 11:e1004609 [Journal] [PubMed]
   Excessive beta oscillations in Parkinson's disease (Pavlides et al. 2015) [Model]
Pirini M, Rocchi L, Sensi M, Chiari L (2009) A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson's disease. J Comput Neurosci 26:91-107 [Journal] [PubMed]
   Investigation of different targets in deep brain stimulation for Parkinson`s (Pirini et al. 2009) [Model]
Rubin J, Josic K (2007) The firing of an excitable neuron in the presence of stochastic trains of strong synaptic inputs. Neural Comput 19:1251-94 [Journal] [PubMed]
Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16:211-35 [Journal] [PubMed]
   High frequency stimulation of the Subthalamic Nucleus (Rubin and Terman 2004) [Model]
   Optimal deep brain stimulation of the subthalamic nucleus-a computational study (Feng et al. 2007) [Model]
So RQ, Kent AR, Grill WM (2012) Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. J Comput Neurosci 32:499-519 [Journal] [PubMed]
   Basal ganglia-thalamic network model for deep brain stimulation (So et al. 2011) [Model]
(16 refs)