Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Channell P, Fuwape I, Neiman AB, Shilnikov AL (2009) Variability of bursting patterns in a neuron model in the presence of noise. J Comput Neurosci 27:527-42 [PubMed]

   Reduced leech heart interneuron (Channell et al. 2009)

References and models cited by this paper

References and models that cite this paper

Arnold V, Iliyashenko Y, Shilinikov L (1994) Dynamical Systems Encyclopaedia of Mathematical Sciences
Bal T, Nagy F, Et_al (1988) The pyloric central pattern generator in crustacea: A set of conditional neuronal oscillators J Comp Physiol 163:715-727
Belykh VN, Belykh IV, Colding-jorgensen M, Mosekilde E (2000) Homoclinic bifurcations leading to bursting oscillations in cell models The European Physical Journal E-soft Matt 3:205-219
Bertram R, Butte MJ, Kiemel T, Sherman A (1995) Topological and phenomenological classification of bursting oscillations. Bull Math Biol 57:413-39 [PubMed]
Bulsara AR, Schieve WC, Jacobs EW (1990) Homoclinic chaos in systems perturbed by weak Langevin noise. Phys Rev A 41:668-681 [PubMed]
Carelli PV, Reyes MB, Sartorelli JC, Pinto RD (2005) Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. J Neurophysiol 94:1169-79 [Journal] [PubMed]
Channell P, Cymbalyuk G, Shilnikov A (2007) Origin of bursting through homoclinic spike adding in a neuron model. Phys Rev Lett 98:134101
Channell P, Cymbalyuk G, Shilnikov AL (2007) Applications of the poincare mapping technique to analysis of neuronal dynamics Neurocomputing 70:10-12
Chay TR (1985) Chaos in a three-variable model of an excitable cell Physica 16:233-242
Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuations. Biophys J 71:3013-21 [Journal] [PubMed]
   Spontaneous firing caused by stochastic channel gating (Chow, White 1996) [Model]
Clewley R, Soto-Treviño C, Nadim F (2009) Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. J Comput Neurosci 26:75-90 [Journal] [PubMed]
Cymbalyuk G, Shilnikov A (2005) Coexistence of tonic spiking oscillations in a leech neuron model. J Comput Neurosci 18:255-63 [Journal] [PubMed]
Cymbalyuk GS, Calabrese RL (2001) A model of slow plateau-like oscillations based upon the fast Na+ current in a window mode Neurocomputing 38:159-166
Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL (2002) Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J Neurosci 22:10580-92 [PubMed]
Deng B, Hines G (2002) Food chain chaos due to Shilnikov's orbit. Chaos 12:533-538 [Journal] [PubMed]
Elson RC, Huerta R, Abarbanel HD, Rabinovich MI, Selverston AI (1999) Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. J Neurophysiol 82:115-22 [Journal] [PubMed]
Elson RC, Selverston AI, Abarbanel HD, Rabinovich MI (2002) Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. J Neurophysiol 88:1166-76 [Journal] [PubMed]
Fan YS, Holden AV (1995) Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity Solitons And Fractals 3:439-449
Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations J Diff Eqn 31:53-98
Feudel U, Neiman A, Pei X, Wojtenek W, Braun H, Huber M, Moss F (2000) Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 10:231-239
Galán RF, Ermentrout GB, Urban NN (2008) Optimal time scale for spike-time reliability: theory, simulations, and experiments. J Neurophysiol 99:277-83 [Journal] [PubMed]
Gavrilov NK, Shilnikov LP (1972) On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve Sborn 17(3):467-485
Goldobin DS, Pikovsky A (2005) Synchronization and desynchronization of self-sustained oscillators by common noise. Phys Rev E Stat Nonlin Soft Matter Phys 71:045201 [Journal] [PubMed]
Goldobin DS, Pikovsky A (2006) Antireliability of noise-driven neurons. Phys Rev E Stat Nonlin Soft Matter Phys 73:061906 [Journal] [PubMed]
Griffiths RE, Pernarowski MC (2006) Return map characterizations for a model of bursting with two slow variables Siam Journal On Applied Mathemati 66:1917-1948
Gu H, Yang M, Li L, Liu Z, Ren W (2002) Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. Neuroreport 13:1657-60 [PubMed]
Guckenheimer J (1996) Towards a global theory of singularly perturbed dynamical systems Prog Non Diff Eqn Appl 19:213-225
Hayashi H, Ishizuka S (1995) Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Res 686:194-206 [PubMed]
Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL (2001) A model of a segmental oscillator in the leech heartbeat neuronal network. J Comput Neurosci 10:281-302 [PubMed]
   Leech heart interneuron network model (Hill et al 2001, 2002) [Model]
Holden AV, Fan Y (1992) From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity Chaos Solitons Fractals 2:349-369
Izhikevich EM (2000) Neural excitability, spiking and bursting Int J Bifurcat Chaos Appl Sci Eng 10:1171-1266
Izhikevich EM (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting [Journal]
   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]
Jaeger L, Kantz H (1997) Homoclinic tangencies and nonnormal jacobians-effects of noise in nonhyperbolic chaotic systems Physica D 105:1-96
Jones CKRT, Kopell N (1994) Tracking invariant-manifolds with differential forms in singularly perturbed systems Journal Of Differential Equations 108:64-88
Kopell N (1988) Toward a theory of modelling central pattern generators Neural Control Of Rhythmic Movements In Vertebrates, Cohen AH:Rossignol S:Grillner S, ed. pp.369
Kramer MA, Traub RD, Kopell NJ (2008) New dynamics in cerebellar Purkinje cells: torus canards. Phys Rev Lett 101:068103 [Journal] [PubMed]
Kuske R, Baer SM (2002) Asymptotic analysis of noise sensitivity in a neuronal burster. Bull Math Biol 64:447-81 [Journal] [PubMed]
Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-6 [PubMed]
Manwani A, Koch C (1999) Detecting and estimating signals in noisy cable structure, I: neuronal noise sources. Neural Comput 11:1797-829 [PubMed]
Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687-717 [Journal] [PubMed]
Medvedev G (2005) Reduction of a model of an excitable cell to a one-dimensional map Physica D 202:37-59
Medvedev GS (2006) Transition to bursting via deterministic chaos. Phys Rev Lett 97:048102 [Journal] [PubMed]
Mira C (1987) Chaotic dynamics from the one-dimensional endomorphism to the two-dimensional diffeomorphism
Pedersen MG, Sorensen MP (2007) The effect of noise of beta-cell burst period Siam Journal On Applied Mathematics 67:530-542
Pei X, Moss F (1996) Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature 379:618-21 [Journal] [PubMed]
Pontryagin LS, Rodygin LV (1960) Periodic solution of a system ofordinary differential equations with a small parameter in the termscontaining derivatives Sov Math Dokl 1:611-614
Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI (2006) Dynamical principles in neuroscience Rev Mod Phys 78:1213-1265
Rinzel J (1985) Bursting oscillations in an excitable membrane model, in ordinary and partial differential equations New Lecture Notes in Mathematics 1151:304-316
Rinzel J, Ermentrout GB (1989) Analysis of neuronal excitability and oscillations Methods In Neuronal Modeling: From Synapses To Networks, Koch C:Segev I, ed. pp.135
Rinzel J, Wang XJ (1995) Oscillatory and bursting properties of neurons. The handbook of brain theory and neural networks :686-691
Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19:1215-50 [Journal] [PubMed]
Rowat PF, Elson RC (2004) State-dependent effects of Na channel noise on neuronal burst generation. J Comput Neurosci 16:87-112 [Journal] [PubMed]
Schiff SJ, Jerger K, Duong DH, Chang T, Spano ML, Ditto WL (1994) Controlling chaos in the brain. Nature 370:615-20
Sharkovsky AN, Kolyada SF, Sivak AG, Fedorenko VV (1997) Dynamics of one-dimensional maps Mathematics and its applications
Shilnikov A, Calabrese RL, Cymbalyuk G (2005) Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys Rev E Stat Nonlin Soft Matter Phys 71:056214 [Journal] [PubMed]
Shilnikov A, Cymbalyuk G (2004) Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper Regular Chaotic Dynamics 9:281-297
Shilnikov A, Cymbalyuk G (2005) Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys Rev Lett 94:048101 [Journal] [PubMed]
Shilnikov AL (1993) On bifurcations of the Lorenz attractor in the Shimizu-Morioka model Physica D 62(1-4):338-346
Shilnikov AL, Kolomiets ML (2008) Methods of the qualitative theory for the Hindmarsh-Rose model: A case study International Journal Of Bifurcation And Chaos 18(7):1-32
Shilnikov AL, Rulkov NF (2003) Origin of chaos in a twodimensional map modeling spiking-bursting neural activity Int J Bif And Chaos 13:3325-3340
Shilnikov AL, Rulkov NF (2004) Subthreshold oscillations in amapbasedneuron model Physics Letters A 328:177-184
Shilnikov LP, Shilnikov AL, Turaev DV, Chua LO (1998) Methods Qualitative Theory in Nonlinear Dynamics
So P, Ott E, Schiff SJ, Kaplan DT, Sauer T, Grebogi C (1996) Detecting unstable periodic orbits in chaotic experimental data. Phys Rev Lett 76:4705-4708 [Journal] [PubMed]
Steriade M, Jones EG, Llinas RR (1990) Thalamic Oscillations And Signalling
Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679-85 [PubMed]
Su JZ, Rubin J, Terman D (2004) Effects of noise on elliptic bursters Nonlinearity 17:133-157
Terman D (1991) Chaotic spikes arising from a model of bursting in excitable membranes. Siam J Appl Math 51:1418-1450
Terman D (1992) The transition from bursting to continuous spiking in excitable membrane models J Nonlinear Sci 2:135-182
Tikhonov AN (1948) On the dependence of solutions of differential equations from a small parameter Matematicheskie Sbornik 22(64):193-204
Wang XJ (1993) Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle Phys D 62:263-274
Yang Z, Qishao L, Li L (2006) The genesis of period-adding bursting without bursting-chaos in the Chay model Chaos Solitons And Fractals 27(3):689-697
(72 refs)