Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||||||||||
Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD (2007) Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol 98:3006-22 [Journal] [PubMed]
Dougalis AG, Matthews GAC, Liss B, Ungless MA (2017) Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. J Comput Neurosci 42:275-305 [Journal] [PubMed]
Komendantov AO, Komendantova OG, Johnson SW, Canavier CC (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346-57 [Journal] [PubMed]
Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC (2010) Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci 28:389-403 [Journal] [PubMed]
Rumbell T, Kozloski J (2019) Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons PLOS Computational Biology 15:1-34 [Journal]
Stanley DA, Bardakjian BL, Spano ML, Ditto WL (2011) Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. J Comput Neurosci 31:647-66 [Journal] [PubMed]
Yu N, Canavier CC (2015) A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. J Math Neurosci 5:5 [Journal] [PubMed]
|