Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Brody CD, Hopfield JJ (2003) Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37:843-52 [PubMed]

References and models cited by this paper

References and models that cite this paper

Aoki T, Aoyagi T (2007) Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural Comput 19:2720-38 [Journal] [PubMed]
Brette R (2012) Computing with neural synchrony. PLoS Comput Biol 8:e1002561 [Journal] [PubMed]
   Computing with neural synchrony (Brette 2012) [Model]
Carey RM, Sherwood WE, Shipley MT, Borisyuk A, Wachowiak M (2015) Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. J Neurophysiol 113:3112-29 [Journal] [PubMed]
   Olfactory bulb juxtaglomerular models (Carey et al., 2015) [Model]
David F, Linster C, Cleland TA (2008) Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J Comput Neurosci 25:25-38 [Journal] [PubMed]
   Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008) [Model]
Kaplan BA, Lansner A (2014) A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system. Front Neural Circuits 8:5 [Journal] [PubMed]
   Self-organized olfactory pattern recognition (Kaplan & Lansner 2014) [Model]
Kim S, Singer BH, Zochowski M (2006) Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural Comput 18:794-816 [Journal] [PubMed]
Masquelier T, Hugues E, Deco G, Thorpe SJ (2009) Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. J Neurosci 29:13484-93 [Journal] [PubMed]
   Oscillations, phase-of-firing coding and STDP: an efficient learning scheme (Masquelier et al. 2009) [Model]
Migliore M, Hines ML, Shepherd GM (2005) The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. J Comput Neurosci 18:151-61 [Journal] [PubMed]
   Olfactory bulb mitral cell: synchronization by gap junctions (Migliore et al 2005) [Model]
Pouille F, McTavish TS, Hunter LE, Restrepo D, Schoppa NE (2017) Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network. J Physiol 595:5965-5986 [Journal] [PubMed]
Tripp B, Eliasmith C (2007) Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cereb Cortex 17:1830-40 [Journal] [PubMed]
   Neural transformations on spike timing information (Tripp and Eliasmith 2007) [Model]
(11 refs)