Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663-7 [PubMed]

References and models cited by this paper

References and models that cite this paper

Corbit VL, Whalen TC, Zitelli KT, Crilly SY, Rubin JE, Gittis AH (2016) Pallidostriatal Projections Promote ß Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 36:5556-71 [Journal] [PubMed]
   Pallidostriatal projections promote beta oscillations (Corbit, Whalen, et al 2016) [Model]
David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N (2015) Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro [Journal] [PubMed]
   Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015) [Model]
Gidon A, Segev I (2012) Principles governing the operation of synaptic inhibition in dendrites. Neuron 75:330-41 [Journal] [PubMed]
   Principles governing the operation of synaptic inhibition in dendrites (Gidon & Segev 2012) [Model]
Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI (2009) Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J Neurophysiol 102:3554-72 [Journal] [PubMed]
   Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009) [Model]
Lee S, Jones SR (2013) Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network. Front Hum Neurosci 7:869 [Journal] [PubMed]
   Current Dipole in Laminar Neocortex (Lee et al. 2013) [Model]
Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19 [Journal] [PubMed]
   Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011) [Model]
Stefanescu RA, Shivakeshavan RG, Khargonekar PP, Talathi SS (2013) Computational modeling of channelrhodopsin-2 photocurrent characteristics in relation to neural signaling. Bull Math Biol 75:2208-40 [Journal] [PubMed]
   Computational modelling of channelrhodopsin-2 photocurrent characteristics (Stefanescu et al. 2013) [Model]
Talathi SS, Carney PR, Khargonekar PP (2011) Control of neural synchrony using channelrhodopsin-2: a computational study. J Comput Neurosci 31:87-103 [Journal] [PubMed]
   Wang-Buzsaki Interneuron (Talathi et al., 2010) [Model]
Tchumatchenko T, Clopath C (2014) Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nat Commun 5:5512 [Journal] [PubMed]
   Oscillations emerging from noise-driven NNs (Tchumatchenko & Clopath 2014) [Model]
Veit J, Hakim R, Jadi MP, Sejnowski TJ, Adesnik H (2017) Cortical gamma band synchronization through somatostatin interneurons. Nat Neurosci 20:951-959 [Journal] [PubMed]
Vierling-Claassen D, Cardin JA, Moore CI, Jones SR (2010) Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Front Hum Neurosci 4:198 [Journal] [PubMed]
   Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010) [Model]
Watanabe T, Shimazaki T, Oda Y (2017) Coordinated Expression of Two Types of Low-Threshold K+ Channels Establishes Unique Single Spiking of Mauthner Cells among Segmentally Homologous Neurons in the Zebrafish Hindbrain. eNeuro [Journal] [PubMed]
   Zebrafish Mauthner-cell model (Watanabe et al 2017) [Model]
(17 refs)