Legends: | Link to a Model | Reference cited by multiple papers |
 • | Controlling KCa channels with different Ca2+ buffering models in Purkinje cell (Anwar et al. 2012) |
References and models cited by this paper | References and models that cite this paper | |||||||||||||||||||||||||
Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A 94:1488-93 [PubMed] Akemann W, Knöpfel T (2006) Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci 26:4602-12 [Journal] [PubMed]
Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812-5 [PubMed] Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303-8 [PubMed] Carnevale NT, Hines M (2006) How to expand NEURON s library of mechanisms The neuron book :207-64 Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L (2009) BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 4:e7991 [Journal] [PubMed] Cingolani LA, Gymnopoulos M, Boccaccio A, Stocker M, Pedarzani P (2002) Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J Neurosci 22:4456-67 [Journal] [PubMed] Cox DH, Cui J, Aldrich RW (1997) Allosteric gating of a large conductance Ca-activated K+ channel. J Gen Physiol 110:257-81 [PubMed] De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375-400 [Journal] [PubMed]
De_schutter E () Modeling intracellular calcium dynamics Computational modeling methods for neuroscientists :93-106 De_schutter E, Modeling_van_geit W () Modeling complex neurons Computational modeling methods for neuroscientists :259-84 Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950-61 [Journal] [PubMed]
Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548:53-69 [Journal] [PubMed] Fakler B, Adelman JP (2008) Control of K(Ca) channels by calcium nano/microdomains. Neuron 59:873-81 [Journal] [PubMed] Gähwiler BH, Llano I (1989) Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. J Physiol 417:105-22 [PubMed] Goldberg JA, Wilson CJ (2005) Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 25:10230-8 [Journal] [PubMed] Gruol DL (1991) Chronic exposure to alcohol during development alters the membrane properties of cerebellar Purkinje neurons in culture. Brain Res 558:1-12 [PubMed] Haghdoost-Yazdi H, Janahmadi M, Behzadi G (2008) Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons. Brain Res 1212:1-8 [Journal] [PubMed] Hartmann J, Konnerth A (2005) Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium 37:459-66 [Journal] [PubMed] Hille B () Selective permeability: independence Ion channels and excitable membranes :441-70 Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]
Hirschberg B, Maylie J, Adelman JP, Marrion NV (1998) Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J Gen Physiol 111:565-81 [PubMed] Iftinca M, McKay BE, Snutch TP, McRory JE, Turner RW, Zamponi GW (2006) Temperature dependence of T-type calcium channel gating. Neuroscience 142:1031-42 [Journal] [PubMed] Jacquin TD, Gruol DL (1999) Ca2+ regulation of a large conductance K+ channel in cultured rat cerebellar Purkinje neurons. Eur J Neurosci 11:735-9 [PubMed] Kaufmann WA, Ferraguti F, Fukazawa Y, Kasugai Y, Shigemoto R, Laake P, Sexton JA, Ruth P, Wietzorrek G, Knaus HG, Storm JF, Ottersen OP (2009) Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains. J Comp Neurol 515:215-30 [Journal] [PubMed] Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899-912 [PubMed]
Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16:955-63 [PubMed] Lee SH, Schwaller B, Neher E (2000) Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites. J Physiol 525 Pt 2:419-32 [PubMed] Maeda H, Ellis-Davies GC, Ito K, Miyashita Y, Kasai H (1999) Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron 24:989-1002 [PubMed] Nägerl UV, Novo D, Mody I, Vergara JL (2000) Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+) Biophys J 79:3009-18 [Journal] [PubMed] Sala F, Hernández-Cruz A (1990) Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J 57:313-24 [Journal] [PubMed] Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551:13-32 [Journal] [PubMed] Sherman A, Keizer J, Rinzel J (1990) Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density. Biophys J 58:985-95 [Journal] [PubMed] Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D'Angelo E (2007) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Front Cell Neurosci 1:2 [Journal] [PubMed]
Stocker M, Pedarzani P (2000) Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 15:476-93 [Journal] [PubMed] Swensen AM, Bean BP (2005) Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. J Neurosci 25:3509-20 [Journal] [PubMed] Tegnér J, Grillner S (1999) Interactive effects of the GABABergic modulation of calcium channels and calcium-dependent potassium channels in lamprey. J Neurophysiol 81:1318-29 [Journal] [PubMed] Traub RD, Llinas R (1977) The spatial distribution of ionic conductances in normal and axotomized motoneurones Neuroscience 2:829-849 Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Front Neuroinform 1:1 [Journal] [PubMed] Womack MD, Hoang C, Khodakhah K (2009) Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellar Purkinje neurons. Neuroscience 162:989-1000 [Journal] [PubMed] Womack MD, Khodakhah K (2002) Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. Eur J Neurosci 16:1214-22 [PubMed] Womack MD, Khodakhah K (2003) Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons. J Neurosci 23:2600-7 [PubMed] Womack MD, Khodakhah K (2004) Dendritic control of spontaneous bursting in cerebellar Purkinje cells. J Neurosci 24:3511-21 [Journal] [PubMed] Yamada WM, Koch C, Adams PR (1998) Multiple channels and calcium dynamics. Methods In Neuronal Modeling: From Synapses To Networks, Koch C:Segev I, ed. pp.137 Yazdi HH, Janahmadi M, Behzadi G (2007) The role of small-conductance Ca2+-activated K+ channels in the modulation of 4-aminopyridine-induced burst firing in rat cerebellar Purkinje cells. Brain Res 1156:59-66 [Journal] [PubMed] Zhuge R, Fogarty KE, Tuft RA, Walsh JV (2002) Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca(2+) concentration on the order of 10 microM during a Ca(2+) spark. J Gen Physiol 120:15-27 [PubMed] | Anwar H, Hepburn I, Nedelescu H, Chen W, De Schutter E (2013) Stochastic calcium mechanisms cause dendritic calcium spike variability. J Neurosci 33:15848-67 [Journal] [PubMed]
Anwar H, Roome CJ, Nedelescu H, Chen W, Kuhn B, De Schutter E (2014) Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models. Front Cell Neurosci 8:168 [Journal] [PubMed]
Chambers JD, Bornstein JC, Gwynne RM, Koussoulas K, Thomas EA (2014) A detailed, conductance-based computer model of intrinsic sensory neurons of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 307:G517-32 [Journal] [PubMed]
Masoli S, Solinas S, D'Angelo E (2015) Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front Cell Neurosci 9:47 [Journal] [PubMed]
Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW (2016) Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 7:157 [Journal] [PubMed]
Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 316:344-66 [Journal] [PubMed]
|