Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


London M, Roth A, Beeren L, Häusser M, Latham PE (2010) Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466:123-7 [PubMed]

   Perturbation sensitivity implies high noise and suggests rate coding in cortex (London et al. 2010)

References and models cited by this paper

References and models that cite this paper

Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex.
Arabzadeh E, Panzeri S, Diamond ME (2006) Deciphering the spike train of a sensory neuron: counts and temporal patterns in the rat whisker pathway. J Neurosci 26:9216-26 [Journal] [PubMed]
Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23:7750-8 [PubMed]
Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8:1185-202 [PubMed]
Banerjee A, Seriès P, Pouget A (2008) Dynamical constraints on using precise spike timing to compute in recurrent cortical networks. Neural Comput 20:974-93 [Journal] [PubMed]
Barbour B, Brunel N, Hakim V, Nadal JP (2007) What can we learn from synaptic weight distributions? Trends Neurosci 30:622-9 [Journal] [PubMed]
Binzegger T, Douglas RJ, Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. J Neurosci 24:8441-53 [Journal] [PubMed]
Braitenberg V, Schuz A (1991) Anatomy of the Cortex: Statistics and Geometry
Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9:608-10 [Journal] [PubMed]
de Kock CP, Sakmann B (2009) Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc Natl Acad Sci U S A 106:16446-50 [Journal] [PubMed]
Ferezou I, Bolea S, Petersen CC (2006) Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50:617-29 [Journal] [PubMed]
Häusser M, Mel B (2003) Dendrites: bug or feature? Curr Opin Neurobiol 13:372-83 [PubMed]
Hecht S, Shlaer S, Pirenne MH (1942) ENERGY, QUANTA, AND VISION. J Gen Physiol 25:819-40 [PubMed]
Herrmann A, Gerstner W (2001) Noise and the PSTH response to current transients: I. General theory and application to the integrate-and-fire neuron. J Comput Neurosci 11:135-51 [PubMed]
Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol 551:139-53 [Journal] [PubMed]
Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]
   Polychronization: Computation With Spikes (Izhikevich 2005) [Model]
Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci U S A 105:3593-8 [Journal] [PubMed]
Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338-41 [Journal] [PubMed]
London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503-32 [Journal] [PubMed]
Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500 ( Pt 2):409-40 [PubMed]
Murayama M, Pérez-Garci E, Nevian T, Bock T, Senn W, Larkum ME (2009) Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457:1137-41 [Journal] [PubMed]
Richardson MJ (2007) Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Phys Rev E Stat Nonlin Soft Matter Phys 76:021919 [Journal] [PubMed]
Richmond BJ, Optican LM, Podell M, Spitzer H (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol 57:132-46 [Journal] [PubMed]
Smale S (1967) Differentiable dynamical systems Bull Am Math Soc 73:747-817
Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68 [Journal] [PubMed]
Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1:19-42 [Journal] [PubMed]
Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23:775-85 [PubMed]
van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724-6 [PubMed]
van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput 10:1321-71 [PubMed]
Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76:1310-26 [Journal] [PubMed]
Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885-92 [Journal] [PubMed]
   Dendritic Discrimination of Temporal Input Sequences (Branco et al. 2010) [Model]
Hass J, Hertäg L, Durstewitz D (2016) A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity. PLoS Comput Biol 12:e1004930 [Journal] [PubMed]
   A detailed data-driven network model of prefrontal cortex (Hass et al 2016) [Model]
Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat Neurosci 15:1498-505 [Journal] [PubMed]
   Excitatory and inhibitory population activity (Bittner et al 2017) (Litwin-Kumar & Doiron 2017) [Model]
(36 refs)