Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Kharche S, Yu J, Lei M, Zhang H (2011) A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases. Am J Physiol Heart Circ Physiol 301:H945-63 [PubMed]

   Biophysically detailed model of the mouse sino-atrial node cell (Kharche et al. 2011)

References and models cited by this paper

References and models that cite this paper

Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D (2009) Control of heart rate by cAMP sensitivity of HCN channels. Proc Natl Acad Sci U S A 106:12189-94 [Journal] [PubMed]
Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D (2003) Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol 549:347-59 [Journal] [PubMed]
Barbuti A, DiFrancesco D (2008) Control of cardiac rate by "funny" channels in health and disease. Ann N Y Acad Sci 1123:213-23 [Journal] [PubMed]
Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G, Gnecchi-Rusconi T, Montano N, Casali KR, Micheloni S, Barbuti A, DiFrancesco D (2011) Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc Natl Acad Sci U S A 108:1705-10 [Journal] [PubMed]
Berry RG, Despa S, Fuller W, Bers DM, Shattock MJ (2007) Differential distribution and regulation of mouse cardiac Na+/K+-ATPase alpha1 and alpha2 subunits in T-tubule and surface sarcolemmal membranes. Cardiovasc Res 73:92-100 [Journal] [PubMed]
Bogdanov KY, Maltsev VA, Vinogradova TM, Lyashkov AE, Spurgeon HA, Stern MD, Lakatta EG (2006) Membrane potential fluctuations resulting from submembrane Ca2+ releases in rabbit sinoatrial nodal cells impart an exponential phase to the late diastolic depolarization that controls their chronotropic state. Circ Res 99:979-87 [Journal] [PubMed]
Bohn G, Moosmang S, Conrad H, Ludwig A, Hofmann F, Klugbauer N (2000) Expression of T- and L-type calcium channel mRNA in murine sinoatrial node. FEBS Lett 481:73-6 [PubMed]
Boyett MR, Honjo H, Kodama I (2000) The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 47:658-87 [PubMed]
Chen B, Wu Y, Mohler PJ, Anderson ME, Song LS (2009) Local control of Ca2+-induced Ca2+ release in mouse sinoatrial node cells. J Mol Cell Cardiol 47:706-15 [Journal] [PubMed]
Cho HS, Takano M, Noma A (2003) The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. J Physiol 550:169-80 [Journal] [PubMed]
Clark RB, Mangoni ME, Lueger A, Couette B, Nargeot J, Giles WR (2004) A rapidly activating delayed rectifier K+ current regulates pacemaker activity in adult mouse sinoatrial node cells. Am J Physiol Heart Circ Physiol 286:H1757-66 [Journal] [PubMed]
Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531-8 [Journal] [PubMed]
Demir SS, Clark JW, Murphey CR, Giles WR (1994) A mathematical model of a rabbit sinoatrial node cell. Am J Physiol 266:C832-52 [Journal] [PubMed]
Denyer JC, Brown HF (1990) Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol 428:405-24 [PubMed]
Despa S, Bossuyt J, Han F, Ginsburg KS, Jia LG, Kutchai H, Tucker AL, Bers DM (2005) Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res 97:252-9 [Journal] [PubMed]
Dokos S, Celler B, Lovell N (1996) Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model. J Theor Biol 181:245-72 [Journal] [PubMed]
Faber GM, Rudy Y (2007) Calsequestrin mutation and catecholaminergic polymorphic ventricular tachycardia: a simulation study of cellular mechanism. Cardiovasc Res 75:79-88 [Journal] [PubMed]
Fukuzaki K, Sato T, Miki T, Seino S, Nakaya H (2008) Role of sarcolemmal ATP-sensitive K+ channels in the regulation of sinoatrial node automaticity: an evaluation using Kir6.2-deficient mice. J Physiol 586:2767-78 [Journal] [PubMed]
Greenstein JL, Tanskanen AJ, Winslow RL (2004) Modeling the actions of beta-adrenergic signaling on excitation--contraction coupling processes. Ann N Y Acad Sci 1015:16-27 [Journal] [PubMed]
Guo J, Mitsuiye T, Noma A (1997) The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch 433:390-6 [Journal] [PubMed]
Guo J, Ono K, Noma A (1995) A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. J Physiol 483 ( Pt 1):1-13 [PubMed]
Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233-53 [PubMed]
Han F, Bossuyt J, Despa S, Tucker AL, Bers DM (2006) Phospholemman phosphorylation mediates the protein kinase C-dependent effects on Na+/K+ pump function in cardiac myocytes. Circ Res 99:1376-83 [Journal] [PubMed]
Heath BM, Terrar DA (1996) The deactivation kinetics of the delayed rectifier components IKr and IKs in guinea-pig isolated ventricular myocytes. Exp Physiol 81:605-21 [PubMed]
Herrmann S, Stieber J, Ludwig A (2007) Pathophysiology of HCN channels. Pflugers Arch 454:517-22 [Journal] [PubMed]
Herrmann S, Stieber J, Stöckl G, Hofmann F, Ludwig A (2007) HCN4 provides a 'depolarization reserve' and is not required for heart rate acceleration in mice. EMBO J 26:4423-32 [Journal] [PubMed]
Himeno Y, Toyoda F, Satoh H, Amano A, Cha CY, Matsuura H, Noma A (2011) Minor contribution of cytosolic Ca2+ transients to the pacemaker rhythm in guinea pig sinoatrial node cells. Am J Physiol Heart Circ Physiol 300:H251-61 [Journal] [PubMed]
Hund TJ, Rudy Y (2004) Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 110:3168-74 [Journal] [PubMed]
   A dynamic model of the canine ventricular myocyte (Hund, Rudy 2004) [Model]
Hüser J, Blatter LA, Lipsius SL (2000) Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol 524 Pt 2:415-22 [PubMed]
Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL, Graham RM, Cannell MB, Allen DG (2007) Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ Res 100:1605-14 [Journal] [PubMed]
Kharche S, Higham J, Lei M, Zhang H (2011) Functional Roles of Ionic Currents in a Membrane Delimited Mouse Sino-Atrial Node Cell Model (online) Computing in Cardiology 37:421-424
Kharche S, Ludtke N, Panzeri S (2009) A global sensitivity index for biophysically detailed cardiac cell models: a computational approach LNCS 5528:10
Kneller J, Ramirez RJ, Chartier D, Courtemanche M, Nattel S (2002) Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am J Physiol Heart Circ Physiol 282:H1437-51 [Journal] [PubMed]
Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272:H2793-806 [Journal] [PubMed]
Krogh-Madsen T, Schaffer P, Skriver AD, Taylor LK, Pelzmann B, Koidl B, Guevara MR (2005) An ionic model for rhythmic activity in small clusters of embryonic chick ventricular cells. Am J Physiol Heart Circ Physiol 289:H398-413 [Journal] [PubMed]
Kurata Y, Hisatome I, Imanishi S, Shibamoto T (2002) Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. Am J Physiol Heart Circ Physiol 283:H2074-101 [Journal] [PubMed]
Kurata Y, Matsuda H, Hisatome I, Shibamoto T (2008) Regional difference in dynamical property of sinoatrial node pacemaking: role of na+ channel current. Biophys J 95:951-77 [Journal] [PubMed]
Lakatta EG, Vinogradova TM, Maltsev VA (2008) The missing link in the mystery of normal automaticity of cardiac pacemaker cells. Ann N Y Acad Sci 1123:41-57 [Journal] [PubMed]
Lei M, Goddard C, Liu J, Léoni AL, Royer A, Fung SS, Xiao G, Ma A, Zhang H, Charpentier F, Vandenberg JI, Colledge WH, Grace AA, Huang CL (2005) Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J Physiol 567:387-400 [Journal] [PubMed]
Lei M, Honjo H, Kodama I, Boyett MR (2000) Characterisation of the transient outward K+ current in rabbit sinoatrial node cells. Cardiovasc Res 46:433-41 [PubMed]
Lei M, Jones SA, Liu J, Lancaster MK, Fung SS, Dobrzynski H, Camelliti P, Maier SK, Noble D, Boyett MR (2004) Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol 559:835-48 [Journal] [PubMed]
Lei M, Zhang H, Grace AA, Huang CL (2007) SCN5A and sinoatrial node pacemaker function. Cardiovasc Res 74:356-65 [Journal] [PubMed]
Liao Z, Lockhead D, Larson ED, Proenza C (2010) Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node. J Gen Physiol 136:247-58 [Journal] [PubMed]
Lipsius SL, Hüser J, Blatter LA (2001) Intracellular Ca2+ release sparks atrial pacemaker activity. News Physiol Sci 16:101-6 [PubMed]
Liu J, Dobrzynski H, Yanni J, Boyett MR, Lei M (2007) Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovasc Res 73:729-38 [Journal] [PubMed]
Livshitz L, Rudy Y (2009) Uniqueness and stability of action potential models during rest, pacing, and conduction using problem-solving environment. Biophys J 97:1265-76 [Journal] [PubMed]
Lomax AE, Rose RA, Giles WR (2003) Electrophysiological evidence for a gradient of G protein-gated K+ current in adult mouse atria. Br J Pharmacol 140:576-84 [Journal] [PubMed]
Lyashkov AE, Juhaszova M, Dobrzynski H, Vinogradova TM, Maltsev VA, Juhasz O, Spurgeon HA, Sollott SJ, Lakatta EG (2007) Calcium cycling protein density and functional importance to automaticity of isolated sinoatrial nodal cells are independent of cell size. Circ Res 100:1723-31 [Journal] [PubMed]
Maltsev VA, Lakatta EG (2007) Cardiac pacemaker cell failure with preserved I(f), I(CaL), and I(Kr): a lesson about pacemaker function learned from ischemia-induced bradycardia. J Mol Cell Cardiol 42:289-94 [Journal] [PubMed]
Maltsev VA, Lakatta EG (2009) Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol Heart Circ Physiol 296:H594-615 [Journal] [PubMed]
Maltsev VA, Vinogradova TM, Bogdanov KY, Lakatta EG, Stern MD (2004) Diastolic calcium release controls the beating rate of rabbit sinoatrial node cells: numerical modeling of the coupling process. Biophys J 86:2596-605 [Journal] [PubMed]
Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543-8 [Journal] [PubMed]
Mangoni ME, Couette B, Marger L, Bourinet E, Striessnig J, Nargeot J (2006) Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. Prog Biophys Mol Biol 90:38-63 [Journal] [PubMed]
Mangoni ME, Nargeot J (2001) Properties of the hyperpolarization-activated current (I(f)) in isolated mouse sino-atrial cells. Cardiovasc Res 52:51-64 [PubMed]
Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919-82 [Journal] [PubMed]
Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 98:1422-30 [Journal] [PubMed]
Masumiya H, Yamamoto H, Hemberger M, Tanaka H, Shigenobu K, Chen SR, Furukawa T (2003) The mouse sino-atrial node expresses both the type 2 and type 3 Ca(2+) release channels/ryanodine receptors. FEBS Lett 553:141-4 [PubMed]
Matsuura H, Ehara T, Ding WG, Omatsu-Kanbe M, Isono T (2002) Rapidly and slowly activating components of delayed rectifier K(+) current in guinea-pig sino-atrial node pacemaker cells. J Physiol 540:815-30 [PubMed]
Mills GD, Harris DM, Chen X, Houser SR (2007) Intracellular sodium determines frequency-dependent alterations in contractility in hypertrophied feline ventricular myocytes. Am J Physiol Heart Circ Physiol 292:H1129-38 [Journal] [PubMed]
Mitsuiye T, Guo J, Noma A (1999) Nicardipine-sensitive Na+-mediated single channel currents in guinea-pig sinoatrial node pacemaker cells. J Physiol 521 Pt 1:69-79 [PubMed]
Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646-52 [PubMed]
Nikmaram MR, Liu J, Abdelrahman M, Dobrzynski H, Boyett MR, Lei M (2008) Characterization of the effects of ryanodine, TTX, E-4031 and 4-AP on the sinoatrial and atrioventricular nodes. Prog Biophys Mol Biol 96:452-64 [Journal] [PubMed]
NOBLE D (1962) A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol 160:317-52 [PubMed]
Ono K, Shibata S, Iijima T (2003) Pacemaker mechanism of porcine sino-atrial node cells. J Smooth Muscle Res 39:195-204 [PubMed]
Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH (2001) The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. J Mol Cell Cardiol 33:851-72 [Journal] [PubMed]
Rose RA, Kabir MG, Backx PH (2007) Altered heart rate and sinoatrial node function in mice lacking the cAMP regulator phosphoinositide 3-kinase-gamma. Circ Res 101:1274-82 [Journal] [PubMed]
Sarai N, Matsuoka S, Kuratomi S, Ono K, Noma A (2003) Role of individual ionic current systems in the SA node hypothesized by a model study. Jpn J Physiol 53:125-34 [PubMed]
Satoh H (2003) Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels. J Smooth Muscle Res 39:175-93 [PubMed]
Shannon TR, Chu G, Kranias EG, Bers DM (2001) Phospholamban decreases the energetic efficiency of the sarcoplasmic reticulum Ca pump. J Biol Chem 276:7195-201 [Journal] [PubMed]
Shannon TR, Ginsburg KS, Bers DM (2000) Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophys J 78:322-33 [Journal] [PubMed]
Shannon TR, Ginsburg KS, Bers DM (2002) Quantitative assessment of the SR Ca2+ leak-load relationship. Circ Res 91:594-600 [PubMed]
Shannon TR, Wang F, Bers DM (2005) Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model. Biophys J 89:4096-110 [Journal] [PubMed]
Shannon TR, Wang F, Puglisi J, Weber C, Bers DM (2004) A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J 87:3351-71 [Journal] [PubMed]
Shinagawa Y, Satoh H, Noma A (2000) The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J Physiol 523 Pt 3:593-605 [PubMed]
Sun H, Varela D, Chartier D, Ruben PC, Nattel S, Zamponi GW, Leblanc N (2008) Differential interactions of Na+ channel toxins with T-type Ca2+ channels. J Gen Physiol 132:101-13 [Journal] [PubMed]
Tao T, O'Neill SC, Diaz ME, Li YT, Eisner DA, Zhang H (2008) Alternans of cardiac calcium cycling in a cluster of ryanodine receptors: a simulation study. Am J Physiol Heart Circ Physiol 295:H598-609 [Journal] [PubMed]
Varghese A, Sell GR (1997) A conservation principle and its effect on the formulation of Na-Ca exchanger current in cardiac cells. J Theor Biol 189:33-40 [Journal] [PubMed]
Veldkamp MW, Wilders R, Baartscheer A, Zegers JG, Bezzina CR, Wilde AA (2003) Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res 92:976-83 [Journal] [PubMed]
Verheijck EE, van Ginneken AC, Bourier J, Bouman LN (1995) Effects of delayed rectifier current blockade by E-4031 on impulse generation in single sinoatrial nodal myocytes of the rabbit. Circ Res 76:607-15 [PubMed]
Verheijck EE, van Kempen MJ, Veereschild M, Lurvink J, Jongsma HJ, Bouman LN (2001) Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res 52:40-50 [PubMed]
Verkerk AO, van Borren MM, Peters RJ, Broekhuis E, Lam KY, Coronel R, de Bakker JM, Tan HL, Wilders R (2007) Single cells isolated from human sinoatrial node: action potentials and numerical reconstruction of pacemaker current. Conf Proc IEEE Eng Med Biol Soc 2007:904-7 [Journal] [PubMed]
Vinogradova TM, Sirenko S, Lyashkov AE, Younes A, Li Y, Zhu W, Yang D, Ruknudin AM, Spurgeon H, Lakatta EG (2008) Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases. Circ Res 102:761-9 [Journal] [PubMed]
Wilders R (2007) Computer modelling of the sinoatrial node. Med Biol Eng Comput 45:189-207 [Journal] [PubMed]
Wu Y, Gao Z, Chen B, Koval OM, Singh MV, Guan X, Hund TJ, Kutschke W, Sarma S, Grumbach IM, Wehrens XH, Mohler PJ, Song LS, Anderson ME (2009) Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proc Natl Acad Sci U S A 106:5972-7 [Journal] [PubMed]
Xu H, Guo W, Nerbonne JM (1999) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113:661-78 [PubMed]
Xu H, Li H, Nerbonne JM (1999) Elimination of the transient outward current and action potential prolongation in mouse atrial myocytes expressing a dominant negative Kv4 alpha subunit. J Physiol 519 Pt 1:11-21 [PubMed]
Yin J, Wang Y, Li Q, Shang Z, Su S, Cheng Y, Xu Y (2004) Effects of nanomolar concentration dihydroouabain on calcium current and intracellular calcium in guinea pig ventricular myocytes. Life Sci 76:613-28 [Journal] [PubMed]
Zhang H, Holden AV, Boyett MR (2002) Sustained inward current and pacemaker activity of mammalian sinoatrial node. J Cardiovasc Electrophysiol 13:809-12 [PubMed]
Zhang H, Holden AV, Kodama I, Honjo H, Lei M, Varghese T, Boyett MR (2000) Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol 279:H397-421 [Journal] [PubMed]
Zhang H, Zhao Y, Lei M, Dobrzynski H, Liu JH, Holden AV, Boyett MR (2007) Computational evaluation of the roles of Na+ current, iNa, and cell death in cardiac pacemaking and driving. Am J Physiol Heart Circ Physiol 292:H165-74 [Journal] [PubMed]
Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D, Namkung Y, Shin HS, Chiamvimonvat N (2002) Functional Roles of Ca(v)1.3 (alpha(1D)) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 90:981-7 [PubMed]
Zhou Z, Lipsius SL (1994) T-type calcium current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol 26:1211-9 [Journal] [PubMed]
Mäki-Marttunen T, Lines GT, Edwards AG, Tveito A, Dale AM, Einevoll GT, Andreassen OA (2017) Pleiotropic effects of schizophrenia-associated genetic variants in neuron firing and cardiac pacemaking revealed by computational modeling. Transl Psychiatry 7:5 [Journal] [PubMed]
   Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017) [Model]
(93 refs)