Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529-33 [PubMed]

   Stable propagation of synchronous spiking in cortical neural networks (Diesmann et al 1999)

References and models cited by this paper

References and models that cite this paper

Abeles M (1982) Role of the cortical neuron: integrator or coincidence detector? Isr J Med Sci 18:83-92 [PubMed]
Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex.
Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70:1629-38 [Journal] [PubMed]
Arieli A, Shoham D, Hildesheim R, Grinvald A (1995) Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J Neurophysiol 73:2072-93 [Journal] [PubMed]
Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868-71 [PubMed]
Arnoldi HM, Brauer W (1996) Synchronization without oscillatory neurons. Biol Cybern 74:209-23 [PubMed]
Bernander O, Koch C, Usher M (1994) The effects of synchronized inputs at the single neuron level. Neural Comput 6:622-641
Bienenstock E (1995) A model of nerocortex Comput Neural Syst 6:179-224
Braitenberg V, Schuz A (1991) Anatomy of the Cortex: Statistics and Geometry
Calvin WH, Stevens CF (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol 31:574-87 [Journal] [PubMed]
Diesmann M (1997) Cortical synfire activity—a two dimensional state space analysis From Membrane to Mind: Proceedings of the 25th Gottinger Neurobiology, Wassle H:Elsner N, ed.
Diesmann M, Gewaltig MO, Aertsen A (1995) SYNOD: An environment forneural systems simulations: Language interface and tutorial Tel Aviv:Weizmann Institute of Science
Diesmann M, Gewaltig MO, Aertsen A (1996) Computational Neuroscience: Trends In Research, Bower J, ed. pp.59
Fetz EE, Toyama K, Smith WS (1991) Synaptic interactions between cortical neurons Cerebral Cortex, Peters A:Jones EG, ed. pp.1
GERSTEIN GL, MANDELBROT B (1964) RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON. Biophys J 4:41-68 [PubMed]
GRIFFITH JS (1963) On the stability of brain-like structures. Biophys J 3:299-308 [PubMed]
Herrmann M, Hertz J, Prugel-bennett A (1995) Analysis of synfire chains Computation In Neural Systems 6:403-414
Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554-8 [PubMed]
König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130-7 [PubMed]
Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-6 [PubMed]
Marsálek P, Koch C, Maunsell J (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A 94:735-40 [PubMed]
Murthy VN, Fetz EE (1994) Effects of input synchrony on the firing rate of a three-conductance cortical neuron model. Neural Comput 6:1111-1126
Nowak LG, Sanchez-Vives MV, McCormick DA (1997) Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cereb Cortex 7:487-501 [PubMed]
Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7:419-40 [Journal] [PubMed]
Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M (1998) Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol 79:2857-74 [Journal] [PubMed]
Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278:1950-3 [PubMed]
Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569-79 [PubMed]
Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870-96 [Journal] [PubMed]
Tuckwell HC (1988) Introduction To Theoretical Neurobiology: Vol 1, Linear Cable Theory And Dendritic Structure
van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724-6 [PubMed]
Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D (2017) Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology
   Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017) [Model]
Abeles M, Hayon G, Lehmann D (2004) Modeling compositionality by dynamic binding of synfire chains. J Comput Neurosci 17:179-201 [Journal] [PubMed]
Amari S, Nakahara H (2005) Difficulty of singularity in population coding. Neural Comput 17:839-58 [Journal] [PubMed]
Aoki T, Aoyagi T (2007) Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural Comput 19:2720-38 [Journal] [PubMed]
Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks. Neural Comput 17:691-713 [Journal] [PubMed]
Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci U S A 97:8110-5 [Journal] [PubMed]
Câteau H, Reyes AD (2006) Relation between single neuron and population spiking statistics and effects on network activity. Phys Rev Lett 96:058101 [Journal] [PubMed]
Dayhoff JE (2007) Computational properties of networks of synchronous groups of spiking neurons. Neural Comput 19:2433-67 [Journal] [PubMed]
Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [Journal] [PubMed]
Günay C, Maida AS (2003) Temporal binding as an inducer for connectionist recruitment learning over delayed lines. Neural Netw 16:593-600 [Journal] [PubMed]
Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J Comput Neurosci 11:121-34 [PubMed]
Hamaguchi K, Okada M, Aihara K (2007) Variable timescales of repeated spike patterns in synfire chain with Mexican-hat connectivity. Neural Comput 19:2468-91 [Journal] [PubMed]
Hamaguchi K, Okada M, Yamana M, Aihara K (2005) Correlated firing in a feedforward network with Mexican-hat-type connectivity. Neural Comput 17:2034-59 [Journal] [PubMed]
Hayon G, Abeles M, Lehmann D (2005) A model for representing the dynamics of a system of synfire chains. J Comput Neurosci 18:41-53 [Journal] [PubMed]
Hosaka R, Araki O, Ikeguchi T (2008) STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural Comput 20:415-35 [Journal] [PubMed]
Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]
   Polychronization: Computation With Spikes (Izhikevich 2005) [Model]
Jaeger D (2003) No Parallel Fiber Volleys in the Cerebellar Cortex: Evidence from Cross-Correlation Analysis between Purkinje Cells in a Computer Model and in Recordings from Anesthetized Rats Journal of Computational Neuroscience 14:311-327 [Journal] [PubMed]
Jin DZ, Ramazanoglu FM, Seung HS (2007) Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J Comput Neurosci 23:283-99 [Journal] [PubMed]
Jolivet R, Gerstner W (2004) Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. J Physiol Paris 98:442-51 [Journal] [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21:35-49 [Journal] [PubMed]
   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]
Jun JK, Jin DZ (2007) Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity. PLoS One 2:e723 [Journal] [PubMed]
   Formation of synfire chains (Jun and Jin 2007) [Model]
Kaltenbrunner A, Gómez V, López V (2007) Phase transition and hysteresis in an ensemble of stochastic spiking neurons. Neural Comput 19:3011-50 [Journal] [PubMed]
Khalil R, Moftah MZ, Moustafa AA (2017) The effects of dynamical synapses on firing rate activity: a spiking neural network model. Eur J Neurosci 46:2445-2470 [Journal] [PubMed]
Komarov M, Bazhenov M (2016) Linking dynamics of the inhibitory network to the input structure. J Comput Neurosci 41:367-391 [Journal] [PubMed]
   Linking dynamics of the inhibitory network to the input structure (Komarov & Bazhenov 2016) [Model]
Kumar A, Schrader S, Aertsen A, Rotter S (2008) The high-conductance state of cortical networks. Neural Comput 20:1-43 [Journal] [PubMed]
Leibold C, Kempter R (2006) Memory capacity for sequences in a recurrent network with biological constraints. Neural Comput 18:904-41 [Journal] [PubMed]
Litvak V, Sompolinsky H, Segev I, Abeles M (2003) On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. J Neurosci 23:3006-15 [PubMed]
Masuda N (2005) Simultaneous Rate-Synchrony Codes in Populations of Spiking Neurons Neural Comput 18:45-59
Masuda N, Aihara K (2003) Duality of rate coding and temporal coding in multilayered feedforward networks. Neural Comput 15:103-25 [Journal] [PubMed]
Masuda N, Aihara K (2004) Self-organizing dual coding based on spike-time-dependent plasticity. Neural Comput 16:627-63 [Journal] [PubMed]
Masuda N, Doiron B, Longtin A, Aihara K (2005) Coding of temporally varying signals in networks of spiking neurons with global delayed feedback. Neural Comput 17:2139-75 [Journal] [PubMed]
Masuda N, Kori H (2007) Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. J Comput Neurosci 22:327-45 [Journal] [PubMed]
Mikula S, Niebur E (2005) Rate and synchrony in feedforward networks of coincidence detectors: analytical solution. Neural Comput 17:881-902 [Journal] [PubMed]
Morrison A, Mehring C, Geisel T, Aertsen AD, Diesmann M (2005) Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Comput 17:1776-801 [Journal] [PubMed]
Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19:2958-3010 [Journal] [PubMed]
Reed MC, Blum JJ, Mitchell CC (2002) Precision of neural timing: effects of convergence and time-windowing. J Comput Neurosci 13:35-47 [PubMed]
Rudolph M, Destexhe A (2003) Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J Comput Neurosci 14:239-51 [PubMed]
Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539-50 [Journal] [PubMed]
Schneider G, Havenith MN, Nikolic D (2006) Spatiotemporal structure in large neuronal networks detected from cross-correlation. Neural Comput 18:2387-413 [Journal] [PubMed]
Teramae JN, Fukai T (2007) Local cortical circuit model inferred from power-law distributed neuronal avalanches. J Comput Neurosci 22:301-12 [Journal] [PubMed]
Tiesinga PH (2005) Stimulus competition by inhibitory interference. Neural Comput 17:2421-53 [Journal] [PubMed]
Tripp B, Eliasmith C (2007) Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cereb Cortex 17:1830-40 [Journal] [PubMed]
   Neural transformations on spike timing information (Tripp and Eliasmith 2007) [Model]
Van Rossum MC (2001) The transient precision of integrate and fire neurons: effect of background activity and noise. J Comput Neurosci 10:303-11 [Journal] [PubMed]
Veredas FJ, Vico FJ, Alonso JM (2005) Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. J Physiol 567:1057-78 [Journal] [PubMed]
(76 refs)