Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E (2013) Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol 9:e1003220 [PubMed]

   Voltage and light-sensitive Channelrhodopsin-2 model (ChR2-H134R) (Williams et al. 2013) (NEURON)

   Voltage and light-sensitive Channelrhodopsin-2 model (ChR2) (Williams et al. 2013)

References and models cited by this paper

References and models that cite this paper

Abilez OJ, Wong J, Prakash R, Deisseroth K, Zarins CK, Kuhl E (2011) Multiscale computational models for optogenetic control of cardiac function. Biophys J 101:1326-34 [Journal] [PubMed]
Allen TJ, Mikala G (1998) Effects of temperature on human L-type cardiac Ca2+ channels expressed in Xenopus oocytes. Pflugers Arch 436:238-47 [PubMed]
Axelrod D (1977) Cell surface heating during fluorescence photobleaching recovery experiments. Biophys J 18:129-31 [Journal] [PubMed]
Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686-94 [Journal] [PubMed]
Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108:7595-600 [Journal] [PubMed]
Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229-34 [Journal] [PubMed]
Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22:61-71 [Journal] [PubMed]
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263-8 [Journal] [PubMed]
Boyle PM, Williams JC, Entcheva E, Trayanova NA (2012) A computational framework for simulating cardiac optogenetics
Boyle PM, Williams JC, Entcheva E, Trayanova NA (2012) Spatial distribution of channelrhodopsin-2 affects optical stimulation efficiency in cardiac tissue
Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897-900 [Journal] [PubMed]
Chater TE, Henley JM, Brown JT, Randall AD (2010) Voltage- and temperature-dependent gating of heterologously expressed channelrhodopsin-2. J Neurosci Methods 193:7-13 [Journal] [PubMed]
Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275:H301-21 [Journal] [PubMed]
   Cardiac Atrial Cell (Courtemanche et al 1998) [Model]
   Cardiac Atrial Cell (Courtemanche et al 1998) (C++) [Model]
Deisseroth K (2012) Optogenetics and psychiatry: applications, challenges, and opportunities. Biol Psychiatry 71:1030-2 [Journal] [PubMed]
Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380-6 [Journal] [PubMed]
Doerr T, Denger R, Doerr A, Trautwein W (1990) Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflugers Arch 416:230-7 [PubMed]
Donevan SD, Rogawski MA (1995) Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc Natl Acad Sci U S A 92:9298-302 [PubMed]
Entcheva E (2013) Cardiac optogenetics. Am J Physiol Heart Circ Physiol 304:H1179-91 [Journal] [PubMed]
Ernst OP, Sánchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637-43 [Journal] [PubMed]
Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317-22 [Journal] [PubMed]
Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068-72 [PubMed]
Foutz TJ, Arlow RL, McIntyre CC (2012) Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. J Neurophysiol 107:3235-45 [Journal] [PubMed]
   Optical stimulation of a channelrhodopsin-2 positive pyramidal neuron model (Foutz et al 2012) [Model]
Fu LY, Cummins TR, Moczydlowski EG (2013) Sensitivity of cloned muscle, heart and neuronal voltage-gated sodium channels to block by polyamines: a possible basis for modulation of excitability in vivo. Channels (Austin) 6:41-9
Gao J, Mathias RT, Cohen IS, Baldo GJ (1992) Isoprenaline, Ca2+ and the Na(+)-K+ pump in guinea-pig ventricular myocytes. J Physiol 449:689-704 [PubMed]
Gradmann D, Berndt A, Schneider F, Hegemann P (2011) Rectification of the channelrhodopsin early conductance. Biophys J 101:1057-68 [Journal] [PubMed]
Grossman N, Nikolic K, Toumazou C, Degenaar P (2011) Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans Biomed Eng 58:1742-51 [Journal] [PubMed]
Hegemann P, Ehlenbeck S, Gradmann D (2005) Multiple photocycles of channelrhodopsin. Biophys J 89:3911-8 [Journal] [PubMed]
Hille B (1992) Ion Channels of Excitable Membranes
Horie M, Irisawa H (1987) Rectification of muscarinic K+ current by magnesium ion in guinea pig atrial cells. Am J Physiol 253:H210-4 [Journal] [PubMed]
Jia Z, Valiunas V, Lu Z, Bien H, Liu H, Wang HZ, Rosati B, Brink PR, Cohen IS, Entcheva E (2011) Stimulating cardiac muscle by light: cardiac optogenetics by cell delivery. Circ Arrhythm Electrophysiol 4:753-60 [Journal] [PubMed]
Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431-88 [Journal] [PubMed]
Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803-14 [Journal] [PubMed]
Livshitz LM, Rudy Y (2007) Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am J Physiol Heart Circ Physiol 292:H2854-66 [Journal] [PubMed]
Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366-9 [Journal] [PubMed]
Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156-9 [Journal] [PubMed]
Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O'Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fen (2012) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159-72
Müller M, Bamann C, Bamberg E, Kühlbrandt W (2011) Projection structure of channelrhodopsin-2 at 6 Å resolution by electron crystallography. J Mol Biol 414:86-95 [Journal] [PubMed]
Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279-84 [Journal] [PubMed]
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940-5 [Journal] [PubMed]
Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P (2009) Photocycles of channelrhodopsin-2. Photochem Photobiol 85:400-11 [Journal] [PubMed]
Noble D (2002) Modeling the heart--from genes to cells to the whole organ. Science 295:1678-82 [Journal] [PubMed]
Oliva C, Cohen IS, Pennefather P (1990) The mechanism of rectification of iK1 in canine Purkinje myocytes. J Gen Physiol 96:299-318 [PubMed]
Sampson KJ, Iyer V, Marks AR, Kass RS (2010) A computational model of Purkinje fibre single cell electrophysiology: implications for the long QT syndrome. J Physiol 588:2643-55 [Journal] [PubMed]
Stehfest K, Hegemann P (2010) Evolution of the channelrhodopsin photocycle model. Chemphyschem 11:1120-6 [Journal] [PubMed]
Talathi SS, Carney PR, Khargonekar PP (2011) Control of neural synchrony using channelrhodopsin-2: a computational study. J Comput Neurosci 31:87-103 [Journal] [PubMed]
   Wang-Buzsaki Interneuron (Talathi et al., 2010) [Model]
ten Tusscher KH, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291:H1088-100 [Journal] [PubMed]
Uehara A, Fill M, Vélez P, Yasukochi M, Imanaga I (1996) Rectification of rabbit cardiac ryanodine receptor current by endogenous polyamines. Biophys J 71:769-77 [Journal] [PubMed]
Wong J, Abilez OJ, Kuhl E (2012) Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems. J Mech Phys Solids 60:1158-1178 [Journal] [PubMed]
Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9-34 [Journal] [PubMed]
Zimmermann D, Zhou A, Kiesel M, Feldbauer K, Terpitz U, Haase W, Schneider-Hohendorf T, Bamberg E, Sukhorukov VL (2008) Effects on capacitance by overexpression of membrane proteins. Biochem Biophys Res Commun 369:1022-6 [Journal] [PubMed]
DeWoskin D, Myung J, Belle MD, Piggins HD, Takumi T, Forger DB (2015) Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc Natl Acad Sci U S A 112:E3911-9 [Journal] [PubMed]
   HH model neuron of the Suprachiasmatic Nucleus including a persistent Na+ channel (Paul et al 2016) [Model]
(56 refs)