Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||||
Cadetti L, Belluzzi O (2001) Hyperpolarisation-activated current in glomerular cells of the rat olfactory bulb. Neuroreport 12:3117-20 [Journal] [PubMed]
Connelly WM, Crunelli V, Errington AC (2015) The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons. J Neurosci 35:15505-22 [Journal] [PubMed]
Debay D, Wolfart J, Le Franc Y, Le Masson G, Bal T (2004) Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. J Physiol Paris 98:540-58 [Journal] [PubMed] Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18:9099-111 [PubMed] Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [Journal] [PubMed] Schellenberger Costa M, Weigenand A, Ngo HV, Marshall L, Born J, Martinetz T, Claussen JC (2016) A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation. PLoS Comput Biol 12:e1005022 [Journal] [PubMed] Sejnowski TJ, Destexhe A (2000) Why do we sleep? Brain Res 886:208-223 [PubMed] Suffczynski P, Kalitzin S, Lopes Da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126:467-84 [Journal] [PubMed]
Wang J, Chen S, Nolan MF, Siegelbaum SA (2002) Activity-dependent regulation of HCN pacemaker channels by cyclic AMP: signaling through dynamic allosteric coupling. Neuron 36:451-61 [PubMed]
|