Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Masquelier T, Portelli G, Kornprobst P (2016) Microsaccades enable efficient synchrony-based coding in the retina: a simulation study. Sci Rep 6:24086 [PubMed]

   Microsaccades and synchrony coding in the retina (Masquelier et al. 2016)

References and models cited by this paper

References and models that cite this paper

Aytekin M, Victor JD, Rucci M (2014) The visual input to the retina during natural head-free fixation. J Neurosci 34:12701-15 [Journal] [PubMed]
Basalyga G, Montemurro MA, Wennekers T (2013) Information coding in a laminar computational model of cat primary visual cortex. J Comput Neurosci 34:273-83 [Journal] [PubMed]
Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-Hep M, Martinoia S (2009) Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644-51 [Journal] [PubMed]
Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A 94:5411-6 [PubMed]
Brette R (2012) Computing with neural synchrony. PLoS Comput Biol 8:e1002561 [Journal] [PubMed]
   Computing with neural synchrony (Brette 2012) [Model]
Bruno RM (2011) Synchrony in sensation. Curr Opin Neurobiol 21:701-8 [Journal] [PubMed]
Cherici C, Kuang X, Poletti M, Rucci M (2012) Precision of sustained fixation in trained and untrained observers. J Vis [Journal] [PubMed]
Collewijn H, Kowler E (2008) The significance of microsaccades for vision and oculomotor control. J Vis 8:20.1-21 [Journal] [PubMed]
Dacey DM (1993) The mosaic of midget ganglion cells in the human retina. J Neurosci 13:5334-55 [PubMed]
Donner K, Hemilä S (2007) Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Res 47:1166-77 [Journal] [PubMed]
Engbert R, Kliegl R (2003) Microsaccades uncover the orientation of covert attention. Vision Res 43:1035-45 [PubMed]
Engbert R, Mergenthaler K, Sinn P, Pikovsky A (2011) An integrated model of fixational eye movements and microsaccades. Proc Natl Acad Sci U S A 108:E765-70 [Journal] [PubMed]
Fontaine B, Peña JL, Brette R (2014) Spike-threshold adaptation predicted by membrane potential dynamics in vivo. PLoS Comput Biol 10:e1003560 [Journal] [PubMed]
Gerstner W, Ritz R, van Hemmen JL (1993) Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol Cybern 69:503-15 [PubMed]
Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150-64 [Journal] [PubMed]
Greene E (2006) Simultaneity in the millisecond range as a requirement for effective shape recognition. Behav Brain Funct 2:38 [Journal] [PubMed]
Greschner M, Bongard M, Rujan P, Ammermüller J (2002) Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nat Neurosci 5:341-7 [Journal] [PubMed]
Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]
Kempter R, Gerstner W, van Hemmen JL (2001) Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural Comput 13:2709-41 [Journal] [PubMed]
Kenyon GT, Marshak DW (1998) Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina. Proc Biol Sci 265:919-25 [Journal] [PubMed]
Ko HK, Poletti M, Rucci M (2010) Microsaccades precisely relocate gaze in a high visual acuity task. Nat Neurosci 13:1549-53 [Journal] [PubMed]
Kowler E (2011) Eye movements: the past 25 years. Vision Res 51:1457-83 [Journal] [PubMed]
Kuang X, Poletti M, Victor JD, Rucci M (2012) Temporal encoding of spatial information during active visual fixation. Curr Biol 22:510-4 [Journal] [PubMed]
Kumar A, Rotter S, Aertsen A (2010) Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat Rev Neurosci 11:615-27 [Journal] [PubMed]
Maccione A, Hennig MH, Gandolfo M, Muthmann O, van Coppenhagen J, Eglen SJ, Berdondini L, Sernagor E (2014) Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse. J Physiol 592:1545-63 [Journal] [PubMed]
Marr D,Poggio T (1976) From understanding computation to understanding neural circuitry AI Memo 357:1-22
Martinez-Conde S, Macknik SL (2008) Fixational eye movements across vertebrates: comparative dynamics, physiology, and perception. J Vis 8:28.1-16 [Journal] [PubMed]
Martinez-Conde S, Macknik SL, Hubel DH (2000) Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nat Neurosci 3:251-8 [Journal] [PubMed]
Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat Rev Neurosci 5:229-40 [Journal] [PubMed]
Martinez-Conde S, Otero-Millan J, Macknik SL (2013) The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat Rev Neurosci 14:83-96 [Journal] [PubMed]
Masmoudi K,Antonini M,Kornprobst P (2010) Another look at the retina as an image scalar quantizer Proc. 2010 IEEE Int. Symp. Circuits Syst. :3076-3079
Masquelier T (2012) Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model. J Comput Neurosci 32:425-41 [Journal] [PubMed]
   Relative spike time coding and STDP-based orientation selectivity in V1 (Masquelier 2012) [Model]
Masquelier T (2013) Neural variability, or lack thereof. Front Comput Neurosci 7:7 [Journal] [PubMed]
Masquelier T (2014) Oscillations can reconcile slowly changing stimuli with short neuronal integration and STDP timescales. Network 25:85-96 [Journal] [PubMed]
Masquelier T, Guyonneau R, Thorpe SJ (2009) Competitive STDP-based spike pattern learning. Neural Comput 21:1259-76 [Journal] [PubMed]
Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3:e31 [Journal] [PubMed]
McCamy MB, Otero-Millan J, Di Stasi LL, Macknik SL, Martinez-Conde S (2014) Highly informative natural scene regions increase microsaccade production during visual scanning. J Neurosci 34:2956-66 [Journal] [PubMed]
McCamy MB, Otero-Millan J, Macknik SL, Yang Y, Troncoso XG, Baer SM, Crook SM, Martinez-Conde S (2012) Microsaccadic efficacy and contribution to foveal and peripheral vision. J Neurosci 32:9194-204 [Journal] [PubMed]
Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369-402 [Journal] [PubMed]
Mohemmed A,Lu G,Kasabov N (2012) Evaluating SPAN Incremental Learning for Handwritten Digit Recognition Neural Inf. Process :670-677
Moldakarimov S, Bazhenov M, Sejnowski TJ (2015) Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proc Natl Acad Sci U S A 112:2545-50 [Journal] [PubMed]
Neuenschwander S, Singer W (1996) Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379:728-32 [Journal] [PubMed]
Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky EJ (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J Neurosci 25:11003-13 [Journal] [PubMed]
Poletti M, Listorti C, Rucci M (2013) Microscopic eye movements compensate for nonhomogeneous vision within the fovea. Curr Biol 23:1691-5 [Journal] [PubMed]
Ratté S, Hong S, De Schutter E, Prescott SA (2013) Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer. Neuron 78:758-72 [Journal] [PubMed]
Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019-25 [Journal] [PubMed]
Rolfs M (2009) Microsaccades: small steps on a long way. Vision Res 49:2415-41 [Journal] [PubMed]
Roska B, Werblin F (2003) Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat Neurosci 6:600-8 [Journal] [PubMed]
Savarese S,Fei-Fei L (2007) 3D generic object categorization, localization and pose estimation Proc. IEEE Int. Conf. Comput. Vis.
Schiller PH, Logothetis NK (1990) The color-opponent and broad-band channels of the primate visual system. Trends Neurosci 13:392-8 [PubMed]
Stanford LR (1987) Conduction velocity variations minimize conduction time differences among retinal ganglion cell axons. Science 238:358-60 [PubMed]
Stanley GB, Jin J, Wang Y, Desbordes G, Wang Q, Black MJ, Alonso JM (2012) Visual orientation and directional selectivity through thalamic synchrony. J Neurosci 32:9073-88 [Journal] [PubMed]
Tankus A, Fried I (2012) Visuomotor coordination and motor representation by human temporal lobe neurons. J Cogn Neurosci 24:600-10 [Journal] [PubMed]
Theunissen F, Miller JP (1995) Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci 2:149-62 [PubMed]
Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid processing. Neural Netw 14:715-25 [PubMed]
Thorpe SJ,Guyonneau R,Guilbaud N;Allegraud JM,VanRullen R (2004) SpikeNet: real-time visual processing with one spike per neuron Neurocomputing 58-60:857-864
Van Rullen R, Thorpe SJ (2001) Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput 13:1255-83 [PubMed]
Vance P,Coleman SA,Kerr D,Das GP,McGinnity TM (2015) Modelling of a retinal ganglion cell with simple spiking models 2015 Int. Jt. Conf. Neural Networks :1-8
Wang HP, Spencer D, Fellous JM, Sejnowski TJ (2010) Synchrony of thalamocortical inputs maximizes cortical reliability. Science 328:106-9 [Journal] [PubMed]
Wohrer A, Kornprobst P (2009) Virtual Retina: a biological retina model and simulator, with contrast gain control. J Comput Neurosci 26:219-49 [Journal] [PubMed]
   Virtual Retina: biological retina simulator, with contrast gain control (Wohrer and Kornprobst 2009) [Model]
Yang Y, Zador AM (2012) Differences in sensitivity to neural timing among cortical areas. J Neurosci 32:15142-7 [Journal] [PubMed]
(61 refs)