Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Booth V, Rinzel J (1995) A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns. J Comput Neurosci 2:299-312 [PubMed]

References and models cited by this paper

References and models that cite this paper

Ashida G, Abe K, Funabiki K, Konishi M (2007) Passive soma facilitates submillisecond coincidence detection in the owl's auditory system. J Neurophysiol 97:2267-82 [Journal] [PubMed]
Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol 78:3371-85 [Journal] [PubMed]
Brownstone RM (2007) Take Your PIC: motoneuronal persistent inward currents may be somatic as well as dendritic. focus on "facilitation of somatic calcium channels can evoke prolonged tail currents in rat hypoglossal motoneurons". J Neurophysiol 98:579-80 [Journal] [PubMed]
Carlin KP, Jones KE, Jiang Z, Jordan LM, Brownstone RM (2000) Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability. Eur J Neurosci 12:1635-46 [PubMed]
   Dendritic L-type Ca currents in motoneurons (Carlin et al 2000) [Model]
Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput 12:1643-78 [PubMed]
Cisi RR, Kohn AF (2008) Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture. J Comput Neurosci 25:520-42 [Journal] [PubMed]
   Simulation system of spinal cord motor nuclei and assoc. nerves and muscles (Cisi and Kohn 2008) [Model]
Hahn PJ, Durand DM (2003) Bistability dynamics in simulations of neural activity in high-extracellular-potassium conditions. J Comput Neurosci 11:5-18 [Journal]
Kim H (2017) Impact of the localization of dendritic calcium persistent inward current on the input-output properties of spinal motoneuron pool: a computational study. J Appl Physiol (1985) 123:1166-1187 [Journal] [PubMed]
   Locational influence of dendritic PIC on input-output properties of spinal motoneurons (Kim 2017) [Model]
Kim H, Jones KE, Heckman CJ (2014) Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons. PLoS One 9:e95454 [Journal] [PubMed]
   Locational influence of dendritic PIC on input-output properties of spinal motoneurons (Kim 2017) [Model]
Kurian M, Crook SM, Jung R (2011) Motoneuron model of self-sustained firing after spinal cord injury. J Comput Neurosci 31:625-45 [Journal] [PubMed]
   Motoneuron model of self-sustained firing after spinal cord injury (Kurian et al. 2011) [Model]
Lepora NF, Overton PG, Gurney K (2012) Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci 32:1-24 [Journal] [PubMed]
   Parameter estimation for Hodgkin-Huxley based models of cortical neurons (Lepora et al. 2011) [Model]
Li YX, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397-410 [PubMed]
   Bursting in dopamine neurons (Li YX et al 1996) [Model]
Phillips AJ, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167-79 [Journal] [PubMed]
   Quantitative model of sleep-wake dynamics (Phillips & Robinson 2007) [Model]
Purvis LK, Butera RJ (2005) Ionic current model of a hypoglossal motoneuron. J Neurophysiol 93:723-33 [Journal] [PubMed]
   Ionic current model of a Hypoglossal Motoneuron (Purvis & Butera 2005) [Model]
Saraga F, Skinner FK (2002) Dynamics and diversity in interneurons: a model exploration with slowly inactivating potassium currents. Neuroscience 113:193-203 [PubMed]
Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]
   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]
Venugopal S, Hamm TM, Crook SM, Jung R (2011) Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury. J Neurophysiol 106:2167-79 [Journal] [PubMed]
   Inhibitory control of motoneuron excitability (Venugopal et al 2011) [Model]
(17 refs)