Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Ji Y, Zhang YH, Zheng WM (2016) Modelling Spiking Neural Network from the Architecture Evaluation Perspective Journal of Computer Science and Technology 31:50-59

References and models cited by this paper

References and models that cite this paper

Abad P,Puente V,Gregorio J (2009) MRR: Enabling fully adaptive multicast routing for CMP interconnection networks Proc. the 15th IEEE HPCA :355-366
Ali M,Welzl M,Adnan A,et al (2006) Using the NS-2 network simulator for evaluating network on chips (NoC) Proc. IEEE ICET :506-512
Amir A,Datta P,Risk WP,et al (2013) Cognitive computing programming paradigm: A corelet language for composing networks of neurosynaptic cores Proc. the 2013 International Joint Conference on Neural Networks (IJCNN)
Boahen K (2006) Neurogrid: emulating a million neurons in the cortex. Conf Proc IEEE Eng Med Biol Soc Suppl:6702 [Journal] [PubMed]
Carrillo S,Harkin J,McDaid LJ,et al (2013) Scalable hierarchical network-on-chip architecture for spiking neural network hardware implementations IEEE Transactions on Parallel and Distributed Systems 24(12):2451-2461
Chakradhar S,Sankaradas M,Jakkula V,et al (2010) A dynamically configurable coprocessor for convolutional neural networks ACM SIGARCH Computer Architecture News 38(3):247-257
Chen T,Du Z,Sun N,et al (2014) DianNao: A small-footprint high-throughput accelerator for ubiquitous machine- learning ACM SIGPLAN Notices 49(4):269-284
Chen Y,Luo T,Liu S,et al (2014) DaDianNao: A machine- learning supercomputer Proc. the 47th IEEE/ACM Int. Symp. Microarchitecture (MICRO) :609-622
Conklin J, Eliasmith C (2005) A controlled attractor network model of path integration in the rat. J Comput Neurosci 18:183-203 [Journal] [PubMed]
Eliasmith C, Martens J (2011) Normalization for probabilistic inference with neurons. Biol Cybern 104:251-62 [Journal] [PubMed]
Fidjeland AK,Roesch EB,Shanahan MP,et al (2009) NeMo: A platform for neural modelling of spiking neurons using GPUs Proc. the 20th IEEE ASAP :137-144
Furber SB,Lester DR,Plana LA,et al (2013) Overview of the SpiNNaker system architecture IEEE Transactions on Computers 62(12):2454-2467
Glackin B,McGinnity TM,Maguire LP,et al (2005) A novel approach for the implementation of large scale spiking neural networks on FPGA hardware Proc. the 18th IWANN 18:552-563
Happel BLM,Murre JMJ (1994) Design and evolution of modular neural network architectures Neural Networks 7(6/7):985-1004
Hereld M,Stevens R,Sterling T,Gao GR (2009) Structured hints: Extracting and abstracting domain expertise Technical Report, ANL/MCS-TM-303, Argonne National Laboratory., Nov. 2015
Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]
Jerger NE,Peh LS,Lipasti M (2008) Virtual circuit tree multicasting: A case for on-chip hardware multicast support Proc. the 35th International Symposium on Computer Architecture :229-240
Kahng AB,Li B,Peh LS,et al (2009) ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration Proc. Design, Automation and Test in Europe :423-428
Lis M,Shim KS,Cho MH,et al (2015) DARSIM: A parallel cycle- level NoC simulator
Liu D,Chen T,Liu S,et al (2015) PuDianNao: A polyvalent machine learning accelerator Proc. the 20th International Conference on Architectural Support for Programming Languages and Operating Systems :369-381
Pande S (2014) Design exploration of EMBRACE hardware spik- ing neural network architecture and applications Ph.D. Thesis. Electrical & Electronic Engineering College of Engineering and Informatics, National University of Ireland
Paugam-Moisy H,Bohte S (2012) Computing with spiking neuron networks Handbook of Natural Computing, Rozenberg G:Back T:Kok JN, ed. pp.335
Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009-23 [PubMed]
Rodrigo S,Flich J,Duato J,et aL (2008) Efficient unicast and multicast support for CMPs Proc. the 41st IEEE/ACM MICRO :364-375
Schemmel J,Bruderle D,Grubl A,Et Al (2010) A wafer-scale neuromorphic hardware system for large-scale neural modeling Proc. the 2010 IEEE International Symposium on Circuits and Systems, May 30-June 2 :1947-1950
Seo J,Brezzo B,Liu Y,et al (2011) A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons Proc. IEEE CICC
Stewart TC, Bekolay T, Eliasmith C (2012) Learning to select actions with spiking neurons in the Basal Ganglia. Front Neurosci 6:2 [Journal] [PubMed]
Tripp BP, Eliasmith C (2010) Population models of temporal differentiation. Neural Comput 22:621-59 [Journal] [PubMed]
   Population models of temporal differentiation (Tripp and Eliasmith 2010) [Model]
Vainbrand D,Ginosar R (2011) Scalable network-on-chip architecture for configurable neural networks Microprocessors and Microsystems :152-166
Wang HS,Zhu X,Peh LS,et al (2002) Orion: A power- performance simulator for interconnection networks Proc. the 35th Annual IEEE/ACM International Symposium on Microarchitecture :294-305
Wendt K,Ehrlich M,Schuffny R (2008) A graph theoretical approach for a multistep mapping software for the facets project Proc. the 2nd WSEAS International Conference on Computer Engineering and Applications 2ND:189-194
(32 refs)