Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Altoè A, Pulkki V, Verhulst S (2018) The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses. Hear Res 364:68-80 [PubMed]

   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018)

References and models cited by this paper

References and models that cite this paper

Altoè A, Charaziak KK, Shera CA (2017) Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping? J Acoust Soc Am 142:3510 [Journal] [PubMed]
Altoè A, Pulkki V, Verhulst S (2017) Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves. J Acoust Soc Am 141:4438 [Journal] [PubMed]
Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29:681-90 [PubMed]
Corns LF, Johnson SL, Kros CJ, Marcotti W (2014) Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 111:14918-23 [Journal] [PubMed]
Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harb Symp Quant Biol 30:181-90 [PubMed]
Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci U S A 96:4420-5 [PubMed]
Harris DM, Dallos P (1979) Forward masking of auditory nerve fiber responses. J Neurophysiol 42:1083-1107 [Journal] [PubMed]
Hudspeth AJ, Lewis RS (1988) Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana. J Physiol 400:237-74 [PubMed]
Jia S, Dallos P, He DZ (2007) Mechanoelectric transduction of adult inner hair cells. J Neurosci 27:1006-14 [Journal] [PubMed]
Johnson SL (2015) Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding. Elife [Journal] [PubMed]
Johnson SL, Beurg M, Marcotti W, Fettiplace R (2011) Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron 70:1143-54 [Journal] [PubMed]
Johnson SL, Marcotti W (2008) Biophysical properties of CaV1.3 calcium channels in gerbil inner hair cells. J Physiol 586:1029-42 [Journal] [PubMed]
Joris PX, Yin TC (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215-32 [PubMed]
Kidd RC, Weiss TF (1990) Mechanisms that degrade timing information in the cochlea. Hear Res 49:181-207 [PubMed]
Koch C (2004) Biophysics of computation: information processing in single neurons
Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263-91 [PubMed]
Kros CJ, Ruppersberg JP, Rüsch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394:281-4 [Journal] [PubMed]
Kros CJ, Rüsch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci 249:185-93 [Journal] [PubMed]
Kurt S, Sausbier M, Rüttiger L, Brandt N, Moeller CK, Kindler J, Sausbier U, Zimmermann U, van Straaten H, Neuhuber W, Engel J, Knipper M, Ruth P, Schulze H (2012) Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. FASEB J 26:3834-43 [Journal] [PubMed]
Lopez-Poveda EA, Eustaquio-Martín A (2006) A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression. J Assoc Res Otolaryngol 7:218-35 [Journal] [PubMed]
Marcotti W, Johnson SL, Kros CJ (2004) Effects of intracellular stores and extracellular Ca(2+) on Ca(2+)-activated K(+) currents in mature mouse inner hair cells. J Physiol 557:613-33 [Journal] [PubMed]
Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702-11 [PubMed]
Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444-53 [Journal] [PubMed]
Moezzi B, Iannella N, McDonnell MD (2016) Ion channel noise can explain firing correlation in auditory nerves. J Comput Neurosci 41:193-206 [Journal] [PubMed]
Mountain DC, Cody AR (1999) Multiple modes of inner hair cell stimulation. Hear Res 132:1-14 [PubMed]
   Multiple modes of inner hair cell stimulation (Mountain, Cody 1999) [Model]
Oliver D, Taberner AM, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman MC (2006) The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 26:6181-9 [Journal] [PubMed]
Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1-15 [PubMed]
Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D, Frank T, Tarantino LM, Bailey JS, Strenzke N, Brose N, Müller U, Reisinger E, Moser T (2010) Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 13:869-76 [Journal] [PubMed]
Peterson AJ, Irvine DR, Heil P (2014) A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. J Neurosci 34:15097-109 [Journal] [PubMed]
Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305-52 [Journal] [PubMed]
Rutherford MA, Chapochnikov NM, Moser T (2012) Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 32:4773-89 [Journal] [PubMed]
Shamma SA, Chadwick RS, Wilbur WJ, Morrish KA, Rinzel J (1986) A biophysical model of cochlear processing: intensity dependence of pure tone responses. J Acoust Soc Am 80:133-45 [PubMed]
Siegel JH (1992) Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea. Hear Res 59:85-92 [PubMed]
Sumner CJ, Lopez-Poveda EA, O'Mard LP, Meddis R (2002) A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111:2178-88 [PubMed]
Temchin AN, Rich NC, Ruggero MA (2008) Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity. J Neurophysiol 100:2899-906 [Journal] [PubMed]
Temchin AN, Ruggero MA (2010) Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics. J Assoc Res Otolaryngol 11:297-318 [Journal] [PubMed]
Verhulst S, Bharadwaj HM, Mehraei G, Shera CA, Shinn-Cunningham BG (2015) Functional modeling of the human auditory brainstem response to broadband stimulation. J Acoust Soc Am 138:1637-59 [Journal] [PubMed]
Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249-60 [PubMed]
Westerman LA, Smith RL (1988) A diffusion model of the transient response of the cochlear inner hair cell synapse. J Acoust Soc Am 83:2266-76 [PubMed]
Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191-202 [PubMed]
Zagaeski M, Cody AR, Russell IJ, Mountain DC (1994) Transfer characteristic of the inner hair cell synapse: steady-state analysis. J Acoust Soc Am 95:3430-4 [PubMed]
Zhang X, Carney LH (2005) Analysis of models for the synapse between the inner hair cell and the auditory nerve. J Acoust Soc Am 118:1540-53 [PubMed]
   Models analysis for auditory-nerve synapse (Zhang and Carney 2005) [Model]
Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648-70 [PubMed]
   Auditory nerve response model (Zhang et al 2001) [Model]
Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390-412 [Journal] [PubMed]
   Long-term adaptation with power-law dynamics (Zilany et al. 2009) [Model]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]
Verhulst S, Altoè A, Vasilkov V (2018) Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 360:55-75 [Journal] [PubMed]
   Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) [Model]
(45 refs)