Legends: | Link to a Model | Reference cited by multiple papers |
 • | Human auditory periphery model: cochlea, IHC-AN, auditory brainstem responses (Verhulst et al 2018) |
References and models cited by this paper | References and models that cite this paper | |||||
Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651-69 [Journal] [PubMed] Cohen-Schotanus J, Reinders JJ, Agsteribbe J, Meyboom-de Jong B (2002) [Physicians for ten years: a longitudinal survey of the career development of physicians who began their studies in Groningen, the Netherlands]. Ned Tijdschr Geneeskd 146:2474-8 [PubMed] Dau T, Wegner O, Mellert V, Kollmeier B (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530-40 [PubMed] Diependaal RJ, Duifhuis H, Hoogstraten HW, Viergever MA (1987) Numerical methods for solving one-dimensional cochlear models in the time domain. J Acoust Soc Am 82:1655-66 [PubMed] Duifhuis H (2012) Springer Science & Business Media Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochlea Duifhuis H,Hoogstraten HW,Netten SM,van Diependaal RJ,Bialek W (1985) Modelling the cochlear partition with coupled Van der Pol oscillators Peripheral Auditory Mechanisms, Allen JB:Hall JL:Hubbard AE:Neely ST:Tubis A, ed. pp.290 Elliott SJ, Ku EM, Lineton B (2007) A state space model for cochlear mechanics. J Acoust Soc Am 122:2759-71 [Journal] [PubMed] Epp B, Verhey JL, Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. J Acoust Soc Am 128:1870-83 [Journal] [PubMed] Gentle JE (1998) Gaussian Elimination 3.1 Numerical Linear Algebra for Applications in Statistics :87-91 Glasberg BR, Moore BC (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103-38 [PubMed] Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane J. Acoust. Soc. Am. 33:1344-1356 [Journal] Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097-110 [PubMed] Kemp DT, Chum R (1980) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213-32 [PubMed] Liu YW, Neely ST (2010) Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. J Acoust Soc Am 127:2420-32 [Journal] [PubMed] Moleti A, Paternoster N, Bertaccini D, Sisto R, Sanjust F (2009) Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. J Acoust Soc Am 126:2425-36 [Journal] [PubMed] Moore BC, Glasberg BR (1983) Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74:750-3 [PubMed] Oxenham AJ, Shera CA (2003) Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolaryngol 4:541-54 [Journal] [PubMed] Pigasse G (2008) Deriving cochlear delays in humans using otoacoustic emissions and auditory evoked potentials Ph.D. thesis, Prieve BA, Falter SR (1995) COAEs and SSOAEs in adults with increased age. Ear Hear 16:521-8 [PubMed] Probst R, Coats AC, Martin GK, Lonsbury-Martin BL (1986) Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hear Res 21:261-75 [PubMed] Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773-89 [PubMed] Recio A, Rhode WS (2000) Basilar membrane responses to broadband stimuli. J Acoust Soc Am 108:2281-98 [PubMed] Ren T (2002) Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc Natl Acad Sci U S A 99:17101-6 [Journal] [PubMed] Rhode WS, Recio A (2000) Study of mechanical motions in the basal region of the chinchilla cochlea. J Acoust Soc Am 107:3317-32 [PubMed] Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. J Acoust Soc Am 120:901-14 [PubMed] Shera CA (2001) Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. J Acoust Soc Am 110:332-48 [PubMed] Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782-98 [PubMed] Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762-72 [PubMed] Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci U S A 99:3318-23 [Journal] [PubMed] Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343-65 [Journal] [PubMed] Shera CA, Tubis A, Talmadge CL (2008) Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am 124:381-95 [Journal] [PubMed] Shera CA, Zweig G (1991) A symmetry suppresses the cochlear catastrophe. J Acoust Soc Am 89:1276-89 [PubMed] Søndergaard PL,Culling JF,Dau T,Le Goff N,Jepsen ML,Majdak P,Wierstorf H (2011) Towards a binaural modelling toolbox Proceedings of Forum Acousticum Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517-43 [PubMed] van Netten SM,Duifhuis H (1983) Modelling an active, nonlinear cochlea Mechanics of Hearing, de Boer E:Viergever MA, ed. pp.143 Verhulst S, Harte JM, Dau T (2011) Temporal suppression of the click-evoked otoacoustic emission level-curve. J Acoust Soc Am 129:1452-63 [Journal] [PubMed] Verhulst S,Shera CA,Harte JM,Dau T (2011) Can a static nonlinearity account for the dynamics of otoacoustic emission suppression? What Fire is in Mine Ears: Progress in Auditory Biomechanics, Proceedings of the 11th International Mechanics of Hearing Workshop, Shera CA:Olson E, ed. pp.257 Zweig G (1990) The impedance of the organ of Corti Mechanics and Biophysics of Hearing, Lecture Notes in Biomathematics, Dallos PGeisler CDMatthews JW:Ruggero MA:Steele CR, ed. pp.362 Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229-54 [PubMed] Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018-47 [PubMed] | Altoè A, Pulkki V, Verhulst S (2014) Transmission line cochlear models: improved accuracy and efficiency. J Acoust Soc Am 136:EL302-8 [Journal] [PubMed]
Verhulst S, Altoè A, Vasilkov V (2018) Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hear Res 360:55-75 [Journal] [PubMed]
|