Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Peterson AJ, Heil P (2018) A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hear Res 363:1-27 [PubMed]

References and models cited by this paper

References and models that cite this paper

Amarasingham A, Chen TL, Geman S, Harrison MT, Sheinberg DL (2006) Spike count reliability and the Poisson hypothesis. J Neurosci 26:801-9 [Journal] [PubMed]
Andor-Ardó D, Hudspeth AJ, Magnasco MO, Piro O (2010) Modeling the resonant release of synaptic transmitter by hair cells as an example of biological oscillators with cooperative steps. Proc Natl Acad Sci U S A 107:2019-24 [Journal] [PubMed]
Berry MJ, Meister M (1998) Refractoriness and neural precision. J Neurosci 18:2200-11 [PubMed]
Bibikov NG,Ivanitskii GA (1985) . Modelling spontaneous pulsation and short-term adaptation in the fibres of the auditory nerve Biophysics 30:152-156
Brown MC (1994) The antidromic compound action potential of the auditory nerve. J Neurophysiol 71:1826-34 [Journal] [PubMed]
Bruce IC, Erfani Y, Zilany MSA (2018) A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hear Res 360:40-54 [Journal] [PubMed]
Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC (2010) Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 30:7587-97 [Journal] [PubMed]
Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401-17 [PubMed]
Cartee LA, van den Honert C, Finley CC, Miller RL (2000) Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hear Res 146:143-52 [PubMed]
Castellano-Muñoz M, Ricci AJ (2014) Role of intracellular calcium stores in hair-cell ribbon synapse. Front Cell Neurosci 8:162 [Journal] [PubMed]
Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J Neurosci 21:5328-43 [PubMed]
Chacron MJ, Longtin A, St-Hilaire M, Maler L (2000) Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Phys Rev Lett 85:1576-9 [Journal] [PubMed]
Chapochnikov NM, Takago H, Huang CH, Pangršic T, Khimich D, Neef J, Auge E, Göttfert F, Hell SW, Wichmann C, Wolf F, Moser T (2014) Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron 83:1389-403 [Journal] [PubMed]
Cox DR, Isham V (1980) Point Processes
Cox DR, Lewis PAW (1966) The statistical analysis of series of events
Cox DR, Smith WL (1954) On the superposition of renewal processes Biometrika 41:91-99
Delgutte B (1996) Physiological models for basic auditory percepts. Auditory computation, Hawkins HL:McMullen TA:Popper AN:Fay RR, ed. pp.157
Fano U (1947) Ionization yield of radiations. II. The fluctuations of the number of ions Physical Rev 72:26-29
Farkhooi F, Strube-Bloss MF, Nawrot MP (2009) Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability. Phys Rev E Stat Nonlin Soft Matter Phys 79:021905 [Journal] [PubMed]
Frank T, Khimich D, Neef A, Moser T (2009) Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells. Proc Natl Acad Sci U S A 106:4483-8 [Journal] [PubMed]
Frank T, Rutherford MA, Strenzke N, Neef A, Pangršic T, Khimich D, Fejtova A, Fetjova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T (2010) Bassoon and the synaptic ribbon organize Ca²+ channels and vesicles to add release sites and promote refilling. Neuron 68:724-38 [Journal] [PubMed]
Gaumond RP, Kim DO, Molnar CE (1983) Response of cochlear nerve fibers to brief acoustic stimuli: role of discharge-history effects. J Acoust Soc Am 74:1392-8 [PubMed]
Gaumond RP, Molnar CE, Kim DO (1982) Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. J Neurophysiol 48:856-73 [Journal] [PubMed]
Geisler CD, Goldberg JM (1966) A stochastic model of the repetitive activity of neurons. Biophys J 6:53-69 [Journal] [PubMed]
Gleich O, Wilson S (1993) The diameters of guinea pig auditory nerve fibres: distribution and correlation with spontaneous rate. Hear Res 71:69-79 [PubMed]
Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5:147-54 [Journal] [PubMed]
Goldman MS, Maldonado P, Abbott LF (2002) Redundancy reduction and sustained firing with stochastic depressing synapses. J Neurosci 22:584-91 [PubMed]
Goutman JD, Glowatzki E (2007) Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci U S A 104:16341-6 [Journal] [PubMed]
Grant L, Yi E, Glowatzki E (2010) Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse. J Neurosci 30:4210-20 [Journal] [PubMed]
Gray PR (1967) Conditional probability analyses of the spike activity of single neurons. Biophys J 7:759-77 [Journal] [PubMed]
Graydon CW, Cho S, Li GL, Kachar B, von Gersdorff H (2011) Sharp Ca²? nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses. J Neurosci 31:16637-50 [Journal] [PubMed]
Heil P, Neubauer H (2010) Summing Across Different Active Zones can Explain the Quasi-Linear Ca-Dependencies of Exocytosis by Receptor Cells. Front Synaptic Neurosci 2:148 [Journal] [PubMed]
Heil P, Neubauer H, Brown M, Irvine DR (2008) Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers. Hear Res 238:25-38 [Journal] [PubMed]
Heil P, Neubauer H, Irvine DR (2011) An improved model for the rate-level functions of auditory-nerve fibers. J Neurosci 31:15424-37 [Journal] [PubMed]
Heil P, Neubauer H, Irvine DR, Brown M (2007) Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses. J Neurosci 27:8457-74 [Journal] [PubMed]
Heil P, Peterson AJ (2015) Basic response properties of auditory nerve fibers: a review. Cell Tissue Res 361:129-58 [Journal] [PubMed]
Heil P, Peterson AJ (2017) Spike timing in auditory-nerve fibers during spontaneous activity and phase locking. Synapse 71:5-36 [Journal] [PubMed]
Huet A, Batrel C, Tang Y, Desmadryl G, Wang J, Puel JL, Bourien J (2016) Sound coding in the auditory nerve of gerbils. Hear Res 338:32-9 [Journal] [PubMed]
Jackson BS, Carney LH (2005) The spontaneous-rate histogram of the auditory nerve can be explained by only two or three spontaneous rates and long-range dependence. J Assoc Res Otolaryngol 6:148-59 [Journal] [PubMed]
   Auditory nerve spontaneous rate histograms (Jackson and Carney 2005) [Model]
Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115-22 [PubMed]
Johnson DH (1996) Point process models of single-neuron discharges. J Comput Neurosci 3:275-99 [PubMed]
Joshi SN, Dau T, Epp B (2017) A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation. J Assoc Res Otolaryngol 18:323-342 [Journal] [PubMed]
Jung S, Maritzen T, Wichmann C, Jing Z, Neef A, Revelo NH, Al-Moyed H, Meese S, Wojcik SM, Panou I, Bulut H, Schu P, Ficner R, Reisinger E, Rizzoli SO, Neef J, Strenzke N, Haucke V, Moser T (2015) Disruption of adaptor protein 2µ (AP-2µ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO J 34:2686-702 [Journal] [PubMed]
Kallen MJ,Nicolai RP,Farahani SS,Bris R,Guedes Soares C,Martorell S (2010) Superposition of renewal processes for modelling imperfect maintenance Reliability, Risk, And Safety: Theory And Applications 1:629-634
Kantardzhieva A, Liberman MC, Sewell WF (2013) Quantitative analysis of ribbons, vesicles, and cisterns at the cat inner hair cell synapse: correlations with spontaneous rate. J Comp Neurol 521:3260-71 [Journal] [PubMed]
Kelly OE, Johnson DH, Delgutte B, Cariani P (1996) Fractal noise strength in auditory-nerve fiber recordings. J Acoust Soc Am 99:2210-20 [PubMed]
Khimich D, Nouvian R, Pujol R, Tom Dieck S, Egner A, Gundelfinger ED, Moser T (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889-94 [Journal] [PubMed]
Kiang NYS, Watanabe T, Thomas C, Clark LF (1965) Discharge Patterns Of Single Fibers In The Cats Auditory Nerve
Kim MH, Li GL, von Gersdorff H (2013) Single Ca2+ channels and exocytosis at sensory synapses. J Physiol 591:3167-78 [Journal] [PubMed]
Köppl C (1997) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 77:364-77 [Journal] [PubMed]
Kwiatkowski D,Phillips PC,Schmidt P,Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root Journal of Econometrics 54(1):159-178
Lenzi D, Crum J, Ellisman MH, Roberts WM (2002) Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36:649-59 [PubMed]
Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM (1999) Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 19:119-32 [PubMed]
Li J, Young ED (1993) Discharge-rate dependence of refractory behavior of cat auditory-nerve fibers. Hear Res 69:151-62 [PubMed]
Liberman LD, Liberman MC (2016) Postnatal maturation of auditory-nerve heterogeneity, as seen in spatial gradients of synapse morphology in the inner hair cell area. Hear Res 339:12-22 [Journal] [PubMed]
Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31:801-8 [Journal] [PubMed]
Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442-55 [PubMed]
Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45-63 [PubMed]
Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239-41 [PubMed]
Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163-76 [Journal] [PubMed]
Lopez-Najera A, Lopez-Poveda EA, Meddis R (2007) Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: responses to tones. J Acoust Soc Am 122:2124-34 [Journal] [PubMed]
Lowen SB, Teich MC (1992) Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. J Acoust Soc Am 92:803-6 [PubMed]
Manley GA, Robertson D (1976) Analysis of spontaneous activity of auditory neurones in the spiral ganglion of the guinea-pig cochlea. J Physiol 258:323-36 [PubMed]
Matthews G, Fuchs P (2010) The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 11:812-22 [Journal] [PubMed]
Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702-11 [PubMed]
Meddis R (2006) Reply to comment on "Auditory-nerve first-spike latency and auditory absolute threshold: a computer model". J Acoust Soc Am 120:1192-3 [PubMed]
Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444-53 [Journal] [PubMed]
Miller CA, Abbas PJ, Robinson BK (2001) Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol 2:216-32 [PubMed]
Miller MI, Wang J (1993) A new stochastic model for auditory-nerve discharge. J Acoust Soc Am 94:2093-107 [PubMed]
Moezzi B, Iannella N, McDonnell MD (2014) Modeling the influence of short term depression in vesicle release and stochastic calcium channel gating on auditory nerve spontaneous firing statistics. Front Comput Neurosci 8:163 [Journal] [PubMed]
Moezzi B, Iannella N, McDonnell MD (2016) Ion channel noise can explain firing correlation in auditory nerves. J Comput Neurosci 41:193-206 [Journal] [PubMed]
Morsnowski A, Charasse B, Collet L, Killian M, Müller-Deile J (2006) Measuring the refractoriness of the electrically stimulated auditory nerve. Audiol Neurootol 11:389-402 [Journal] [PubMed]
Moser T, Vogl C (2016) New insights into cochlear sound encoding. F1000Res [Journal] [PubMed]
Nawrot MP, Boucsein C, Rodriguez Molina V, Riehle A, Aertsen A, Rotter S (2008) Measurement of variability dynamics in cortical spike trains. J Neurosci Methods 169:374-90 [Journal] [PubMed]
Neef A, Khimich D, Pirih P, Riedel D, Wolf F, Moser T (2007) Probing the mechanism of exocytosis at the hair cell ribbon synapse. J Neurosci 27:12933-44 [Journal] [PubMed]
Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861-72 [Journal] [PubMed]
Neubauer H, Köppl C, Heil P (2009) Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions. J Neurophysiol 101:3169-91 [Journal] [PubMed]
Nouvian R, Beutner D, Parsons TD, Moser T (2006) Structure and function of the hair cell ribbon synapse. J Membr Biol 209:153-65 [Journal] [PubMed]
Ohn TL, Rutherford MA, Jing Z, Jung S, Duque-Afonso CJ, Hoch G, Picher MM, Scharinger A, Strenzke N, Moser T (2016) Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes. Proc Natl Acad Sci U S A 113:E4716-25 [Journal] [PubMed]
Pangršic T, Reisinger E, Moser T (2012) Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci 35:671-80 [Journal] [PubMed]
Pangrsic T, Lasarow L, Reuter K, Takago H, Schwander M, Riedel D, Frank T, Tarantino LM, Bailey JS, Strenzke N, Brose N, Müller U, Reisinger E, Moser T (2010) Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nat Neurosci 13:869-76 [Journal] [PubMed]
Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys J 7:391-418 [Journal] [PubMed]
Peterson AJ, Irvine DR, Heil P (2014) A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers. J Neurosci 34:15097-109 [Journal] [PubMed]
Picinbono B (2009) Output dead-time in point processes Commun Stat - Simul. Comput. :2198-2213
Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89-97 [PubMed]
Prijs VF, Keijzer J, Versnel H, Schoonhoven R (1993) Recovery characteristics of auditory nerve fibres in the normal and noise-damaged guinea pig cochlea. Hear Res 71:190-201 [PubMed]
Rajdl K, Lansky P (2014) Fano factor estimation. Math Biosci Eng 11:105-23 [Journal] [PubMed]
Rudolph S, Tsai MC, von Gersdorff H, Wadiche JI (2015) The ubiquitous nature of multivesicular release. Trends Neurosci 38:428-38 [Journal] [PubMed]
Rutherford MA, Chapochnikov NM, Moser T (2012) Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea. J Neurosci 32:4773-89 [Journal] [PubMed]
Schnee ME, Santos-Sacchi J, Castellano-Muñoz M, Kong JH, Ricci AJ (2011) Calcium-dependent synaptic vesicle trafficking underlies indefatigable release at the hair cell afferent fiber synapse. Neuron 70:326-38 [Journal] [PubMed]
Shepherd RK, Roberts LA, Paolini AG (2004) Long-term sensorineural hearing loss induces functional changes in the rat auditory nerve. Eur J Neurosci 20:3131-40 [Journal] [PubMed]
Siegel JH (1992) Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea. Hear Res 59:85-92 [PubMed]
Sumner CJ, Lopez-Poveda EA, O'Mard LP, Meddis R (2002) A revised model of the inner-hair cell and auditory-nerve complex. J Acoust Soc Am 111:2178-88 [PubMed]
Sumner CJ, Lopez-Poveda EA, O'Mard LP, Meddis R (2003) Adaptation in a revised inner-hair cell model. J Acoust Soc Am 113:893-901 [PubMed]
Sumner CJ, O'Mard LP, Lopez-Poveda EA, Meddis R (2003) A nonlinear filter-bank model of the guinea-pig cochlear nerve: rate responses. J Acoust Soc Am 113:3264-74 [PubMed]
Teich MC (1989) Fractal character of the auditory neural spike train. IEEE Trans Biomed Eng 36:150-60 [Journal] [PubMed]
Teich MC, Johnson DH, Kumar AR, Turcott RG (1990) Rate fluctuations and fractional power-law noise recorded from cells in the lower auditory pathway of the cat. Hear Res 46:41-52 [PubMed]
Teich MC, Khanna SM (1985) Pulse-number distribution for the neural spike train in the cat's auditory nerve. J Acoust Soc Am 77:1110-28 [PubMed]
Teich MC, Lowen SB (1994) Fractal patterns in auditory nerve-spike trains IEEE Engin Med Biol Mag 13:197-202
Teich MC, Turcott RG, Lowen SB (1990) The fractal doubly stochastic Poisson point process as a model for the cochlear neural spike train The Mechanics And Biophysics Of Hearing, Dallos P:Geisler CD:Matthews JW:Ruggero MA:Steele CR, ed. pp.354
Torab P,Kamen EW (2001) On approximate renewal models for the superposition of renewal processes IEEE International Conference On Communications (ICC) 9:2901-2906
Wittig JH, Parsons TD (2008) Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study. J Neurophysiol 100:1724-39 [Journal] [PubMed]
Wong AB, Jing Z, Rutherford MA, Frank T, Strenzke N, Moser T (2013) Concurrent maturation of inner hair cell synaptic Ca2+ influx and auditory nerve spontaneous activity around hearing onset in mice. J Neurosci 33:10661-6 [Journal] [PubMed]
Wong AB, Rutherford MA, Gabrielaitis M, Pangrsic T, Göttfert F, Frank T, Michanski S, Hell S, Wolf F, Wichmann C, Moser T (2014) Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis. EMBO J 33:247-64 [Journal] [PubMed]
Wu JS, Young ED, Glowatzki E (2016) Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations. J Neurosci 36:10584-10597 [Journal] [PubMed]
Yin Y, Liberman LD, Maison SF, Liberman MC (2014) Olivocochlear innervation maintains the normal modiolar-pillar and habenular-cuticular gradients in cochlear synaptic morphology. J Assoc Res Otolaryngol 15:571-83 [Journal] [PubMed]
Young ED, Barta PE (1986) Rate responses of auditory nerve fibers to tones in noise near masked threshold. J Acoust Soc Am 79:426-42 [PubMed]
Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648-70 [PubMed]
   Auditory nerve response model (Zhang et al 2001) [Model]
Zhang-Hooks Y, Agarwal A, Mishina M, Bergles DE (2016) NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea. Neuron 89:337-50 [Journal] [PubMed]
Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446-66 [PubMed]
   Cat auditory nerve model (Zilany and Bruce 2006, 2007) [Model]
Zilany MS, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135:283-6 [Journal] [PubMed]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]
Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390-412 [Journal] [PubMed]
   Long-term adaptation with power-law dynamics (Zilany et al. 2009) [Model]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]
Zilany MS, Carney LH (2010) Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics. J Neurosci 30:10380-90 [Journal] [PubMed]
(113 refs)