Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480-7 [PubMed]

References and models cited by this paper

References and models that cite this paper

Abraham WC, Logan B, Wolff A, Benuskova L (2007) "Heterosynaptic" LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity. J Neurophysiol 98:1048-51 [Journal] [PubMed]
Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, Frégnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16:79-97 [Journal] [PubMed]
   Biophysical and phenomenological models of spike-timing dependent plasticity (Badoual et al. 2006) [Model]
Bono J, Clopath C (2019) Synaptic plasticity onto inhibitory neurons as a mechanism for ocular dominance plasticity. PLoS Comput Biol 15:e1006834 [Journal] [PubMed]
   Inhibitory neuron plasticity as a mechanism for ocular dominance plasticity (Bono & Clopath 2019) [Model]
Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4:e1000248 [Journal] [PubMed]
   Tag Trigger Consolidation (Clopath and Ziegler et al. 2008) [Model]
De Schutter E (1997) A new functional role for cerebellar long-term depression. Prog Brain Res 114:529-42 [PubMed]
   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]
De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks, Koch C:Segev I, ed. pp.211
Franks KM, Sejnowski TJ (2002) Complexity of calcium signaling in synaptic spines. Bioessays 24:1130-44 [Journal] [PubMed]
Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ (2007) Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. J Neurophysiol 97:2851-62 [Journal] [PubMed]
   STDP and NMDAR Subunits (Gerkin et al. 2007) [Model]
Kalitzin S, van Dijk BW, Spekreijse H (2000) Self-organized dynamics in plastic neural networks: bistability and coherence. Biol Cybern 83:139-50 [Journal] [PubMed]
Liu Z, Golowasch J, Marder E, Abbott LF (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci 18:2309-20 [PubMed]
   Activity dependent conductances in a neuron model (Liu et al. 1998) [Model]
Migliore M, Lansky P (1999) Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophys J 77:1234-43 [Journal] [PubMed]
   Stochastic LTP/LTD conditioning of a synapse (Migliore and Lansky 1999) [Model]
Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [Journal] [PubMed]
   Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013) [Model]
Stiefel KM, Gutkin BS, Sejnowski TJ (2009) The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci 26:289-301 [Journal] [PubMed]
Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed]
Zhou YD, Acker CD, Netoff TI, Sen K, White JA (2005) Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102:19121-5 [Journal] [PubMed]
(15 refs)