Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||||||||||||||||||||
Aradi I, Erdi P (1996) Signal generation and propagation in the olfactory bulb: multicompartmental modeling Computers And Mathematics With Applications 32:1-27 Aradi I, Erdi P (1996) MULTICOMPARTMENTAL MODELING OF THE OLFACTORY BULB Cybernetics and Systems 27:605-615 Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215-35 [PubMed]
Aradi I, Holmes WR (1999) Active dendrites regulate spatio-temporal synaptic integration in hippocampal dentate granule cells Neurocomputing 26:45-51 Banerjee A (2001) On the phase-space dynamics of systems of spiking neurons. I: model and experiments. Neural Comput 13:161-93 [PubMed] Bhalla US (2011) Multiscale interactions between chemical and electric signaling in LTP induction, LTP reversal and dendritic excitability. Neural Netw 24:943-9 [Journal] [PubMed]
Borg-Graham LJ (2000) Additional efficient computation of branched nerve equations: adaptive time step and ideal voltage clamp. J Comput Neurosci 8:209-26 [PubMed] Cannon RC, Hasselmo ME, Koene RA (2003) From biophysics to behavior: Catacomb2 and the design of biologically-plausible models for spatial navigation. Neuroinformatics 1:3-42 [Journal] [PubMed]
Dahlhaus R, Eichler M, Sandkühler J (1997) Identification of synaptic connections in neural ensembles by graphical models. J Neurosci Methods 77:93-107 [PubMed] de Pinho M, Roque da Silva AC A realistic computational model of formation and variability of tonotopic maps in the auditory cortex. Neurocomputing 26:355-359 De Schutter E (1998) Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J Neurophysiol 80:504-19 [Journal] [PubMed]
De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks, Koch C:Segev I, ed. pp.211 Erdi P, Aradi I, Gröbler T (1997) Rhythmogenesis in single cells and population models: olfactory bulb and hippocampus. Biosystems 40:45-53 [PubMed] Ferrante M, Blackwell KT, Migliore M, Ascoli GA (2008) Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. Curr Med Chem 15:2456-71 [PubMed]
Fransen E, Wallenstein GV, Alonso AA, Dickson CT, Hasselmo ME (1999) A biophysical simulation of intrinsic and network properties of entorhinal cortex Neurocomputing 26:375-380 Jaeger D (2003) No Parallel Fiber Volleys in the Cerebellar Cortex: Evidence from Cross-Correlation Analysis between Purkinje Cells in a Computer Model and in Recordings from Anesthetized Rats Journal of Computational Neuroscience 14:311-327 [Journal] [PubMed] Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169:417-24 [Journal] [PubMed]
Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959-76 [Journal] [PubMed]
Kilinc D, Demir A (2017) Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques. IEEE Trans Biomed Circuits Syst 11:958-974 [Journal] [PubMed]
Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9 [Journal] [PubMed]
Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941:11-28 [PubMed] Krichmar JL, Velasquez D, Ascoli GA (2006) Effects of beta-catenin on dendritic morphology and simulated firing patterns in cultured hippocampal neurons. Biol Bull 211:31-43 [Journal] [PubMed] Maass W, Natschlager T (1997) Networks of spiking neurons can emulate arbitrary Hopfield nets in temporal coding Network: Computation In Neural Systems 8:355-372 Maex R, De Schutter E (1998) Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521-37 [Journal] [PubMed]
McDougal RA, Bulanova AS, Lytton WW (2016) Reproducibility in Computational Neuroscience Models and Simulations. IEEE Trans Biomed Eng 63:2021-35 [Journal] [PubMed] Menschik ED, Finkel LH (1998) Neuromodulatory control of hippocampal function: towards a model of Alzheimer's disease. Artif Intell Med 13:99-121 [PubMed] Morrison A, Mehring C, Geisel T, Aertsen AD, Diesmann M (2005) Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Comput 17:1776-801 [Journal] [PubMed] Peterson BE, Healy MD, Nadkarni PM, Miller PL, Shepherd GM (1996) ModelDB: an environment for running and storing computational models and their results applied to neuroscience. J Am Med Inform Assoc 3:389-98 [Journal] [PubMed] Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248-63 [Journal] [PubMed] Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633-58 [Journal] [PubMed] Tabak J, Moore LE (1998) Simulation and parameter estimation study of a simple neuronal model of rhythm generation: role of NMDA and non-NMDA receptors. J Comput Neurosci 5:209-35 [PubMed] |