Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol 61:331-49 [PubMed]

References and models cited by this paper

References and models that cite this paper

Amatrudo JM, Weaver CM, Crimins JL, Hof PR, Rosene DL, Luebke JI (2012) Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices. J Neurosci 32:13644-60 [Journal] [PubMed]
   Rhesus Monkey Layer 3 Pyramidal Neurons: V1 vs PFC (Amatrudo, Weaver et al. 2012) [Model]
Aviel Y, Horn D, Abeles M (2005) Memory capacity of balanced networks. Neural Comput 17:691-713 [Journal] [PubMed]
Bickle J, Worley C, Bernstein M (2000) Vector subtraction implemented neurally: a neurocomputational model of some sequential cognitive and conscious processes. Conscious Cogn 9:117-44 [Journal] [PubMed]
Bogaard A, Parent J, Zochowski M, Booth V (2009) Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J Neurosci 29:1677-87 [Journal] [PubMed]
   Small world networks of Type I and Type II Excitable Neurons (Bogaard et al. 2009) [Model]
Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11:63-85 [PubMed]
Byrne P, Becker S (2004) Modeling mental navigation in scenes with multiple objects. Neural Comput 16:1851-72 [Journal] [PubMed]
Coskren PJ, Luebke JI, Kabaso D, Wearne SL, Yadav A, Rumbell T, Hof PR, Weaver CM (2015) Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex. J Comput Neurosci 38:263-83 [Journal] [PubMed]
   Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015) [Model]
Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17:894-908 [Journal] [PubMed]
   Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006) [Model]
Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733-50 [Journal] [PubMed]
   Neocortical pyramidal neuron: deep; effects of dopamine (Durstewitz et al 2000) [Model]
Edin F, Klingberg T, Stödberg T, Tegnér J (2007) Fronto-parietal connection asymmetry regulates working memory distractibility. J Integr Neurosci 6:567-96 [PubMed]
   Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007) [Model]
Edin F, Macoveanu J, Olesen P, Tegnér J, Klingberg T (2007) Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cogn Neurosci 19:750-60 [Journal] [PubMed]
   Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007) [Model]
Fiebig F, Lansner A (2017) A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation. J Neurosci 37:83-96 [Journal] [PubMed]
Fransén E, Lansner A (1998) A model of cortical associative memory based on a horizontal network of connected columns. Network 9:235-64 [PubMed]
Golomb D, Shedmi A, Curtu R, Ermentrout GB (2006) Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J Neurophysiol 95:1049-67 [Journal] [PubMed]
   Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005) [Model]
Gruber AJ, Dayan P, Gutkin BS, Solla SA (2006) Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci 20:153-66 [Journal] [PubMed]
Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J Comput Neurosci 11:121-34 [PubMed]
Hazy TE, Frank MJ, O'reilly RC (2007) Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci 362:1601-13 [Journal] [PubMed]
Hoshino O (2005) Cognitive enhancement mediated through postsynaptic actions of norepinephrine on ongoing cortical activity. Neural Comput 17:1739-75 [Journal] [PubMed]
Joelving FC, Compte A, Constantinidis C (2007) Temporal properties of posterior parietal neuron discharges during working memory and passive viewing. J Neurophysiol 97:2254-66 [Journal] [PubMed]
Macoveanu J, Klingberg T, Tegnér J (2006) A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience 141:1611-8 [Journal] [PubMed]
Mari CF (2004) Extremely dilute modular neuronal networks: neocortical memory retrieval dynamics. J Comput Neurosci 17:57-79 [Journal] [PubMed]
Miller P, Wang XJ (2006) Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos 16:026109 [Journal] [PubMed]
Morita K (2008) Possible role of dendritic compartmentalization in the spatial working memory circuit. J Neurosci 28:7699-724 [Journal] [PubMed]
   Working memory circuit with branched dendrites (Morita 2008) [Model]
Papoutsi A, Sidiropoulou K, Poirazi P (2014) Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model. PLoS Comput Biol 10:e1003764 [Journal] [PubMed]
   L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013) [Model]
Ramirez-Mahaluf JP, Roxin A, Mayberg HS, Compte A (2017) A Computational Model of Major Depression: the Role of Glutamate Dysfunction on Cingulo-Frontal Network Dynamics. Cereb Cortex 27:660-679 [Journal] [PubMed]
   MDD: the role of glutamate dysfunction on Cingulo-Frontal NN dynamics (Ramirez-Mahaluf et al 2017) [Model]
Renart A, Moreno-Bote R, Wang XJ, Parga N (2007) Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Comput 19:1-46 [Journal] [PubMed]
Renart A, Song P, Wang XJ (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:473-85 [PubMed]
Rivest F, Kalaska JF, Bengio Y (2010) Alternative time representation in dopamine models. J Comput Neurosci 28:107-30 [Journal] [PubMed]
   Alternative time representation in dopamine models (Rivest et al. 2009) [Model]
Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 8:e1002489 [Journal] [PubMed]
   Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012) [Model]
Singh R, Eliasmith C (2006) Higher-dimensional neurons explain the tuning and dynamics of working memory cells. J Neurosci 26:3667-78 [Journal] [PubMed]
Ullah G, Cressman JR, Barreto E, Schiff SJ (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states. II. Network and glial dynamics. J Comput Neurosci 26:171-83 [Journal] [PubMed]
   Network model with dynamic ion concentrations (Ullah et al. 2009) [Model]
Xing J, Andersen RA (2000) Memory activity of LIP neurons for sequential eye movements simulated with neural networks. J Neurophysiol 84:651-65 [Journal] [PubMed]
Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161-94 [Journal] [PubMed]
(34 refs)