Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:455-63 [PubMed]

References and models cited by this paper

References and models that cite this paper

Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274-84 [Journal] [PubMed]
   Input Fluctuations effects on f-I curves (Arsiero et al. 2007) [Model]
Blohm G, Optican LM, Lefèvre P (2006) A model that integrates eye velocity commands to keep track of smooth eye displacements. J Comput Neurosci 21:51-70 [Journal] [PubMed]
Durstewitz D (2006) A few important points about dopamine's role in neural network dynamics. Pharmacopsychiatry 39 Suppl 1:S72-5 [Journal] [PubMed]
Edin F, Klingberg T, Stödberg T, Tegnér J (2007) Fronto-parietal connection asymmetry regulates working memory distractibility. J Integr Neurosci 6:567-96 [PubMed]
   Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007) [Model]
Edin F, Macoveanu J, Olesen P, Tegnér J, Klingberg T (2007) Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cogn Neurosci 19:750-60 [Journal] [PubMed]
   Fronto-parietal visuospatial WM model with HH cells (Edin et al 2007) [Model]
Fall CP, Rinzel J (2006) An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. J Comput Neurosci 20:97-107 [Journal] [PubMed]
Golomb D, Shedmi A, Curtu R, Ermentrout GB (2006) Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J Neurophysiol 95:1049-67 [Journal] [PubMed]
   Persistent synchronized bursting activity in cortical tissues (Golomb et al 2005) [Model]
Hamaguchi K, Okada M, Aihara K (2007) Variable timescales of repeated spike patterns in synfire chain with Mexican-hat connectivity. Neural Comput 19:2468-91 [Journal] [PubMed]
Huang CH, Huang YT, Chen CC, Chan CK (2017) Propagation and synchronization of reverberatory bursts in developing cultured networks. J Comput Neurosci 42:177-185 [Journal] [PubMed]
   Reverberatory bursts propagation and synchronization in developing cultured NNs (Huang et al 2016) [Model]
Kaltenbrunner A, Gómez V, López V (2007) Phase transition and hysteresis in an ensemble of stochastic spiking neurons. Neural Comput 19:3011-50 [Journal] [PubMed]
Kepecs A, Raghavachari S (2007) Gating information by two-state membrane potential fluctuations. J Neurophysiol 97:3015-23 [Journal] [PubMed]
Lim S, Goldman MS (2014) Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. J Neurosci 34:6790-806 [Journal] [PubMed]
Lonardoni D, Amin H, Di Marco S, Maccione A, Berdondini L, Nieus T (2017) Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks. PLoS Comput Biol 13:e1005672 [Journal] [PubMed]
Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3:e165 [Journal] [PubMed]
   Computational aspects of feedback in neural circuits (Maass et al 2006) [Model]
Machens CK, Brody CD (2008) Design of continuous attractor networks with monotonic tuning using a symmetry principle. Neural Comput 20:452-85 [Journal] [PubMed]
Machens CK, Romo R, Brody CD (2005) Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307:1121-4 [Journal] [PubMed]
   Neural model of two-interval discrimination (Machens et al 2005) [Model]
Macoveanu J, Klingberg T, Tegnér J (2006) A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience 141:1611-8 [Journal] [PubMed]
Mäki-Marttunen T, Acimovic J, Ruohonen K, Linne ML (2013) Structure-dynamics relationships in bursting neuronal networks revealed using a prediction framework. PLoS One 8:e69373 [Journal] [PubMed]
   Structure-dynamics relationships in bursting neuronal networks revealed (Mäki-Marttunen et al. 2013) [Model]
Miller P, Wang XJ (2006) Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos 16:026109 [Journal] [PubMed]
Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P (2013) Induction and modulation of persistent activity in a layer V PFC microcircuit model. Front Neural Circuits 7:161 [Journal] [PubMed]
   L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013) [Model]
Park EH, Barreto E, Gluckman BJ, Schiff SJ, So P (2005) A model of the effects of applied electric fields on neuronal synchronization. J Comput Neurosci 19:53-70 [Journal] [PubMed]
Rao RP (2004) Bayesian computation in recurrent neural circuits. Neural Comput 16:1-38 [PubMed]
Renart A, Song P, Wang XJ (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:473-85 [PubMed]
Shanahan M (2008) A spiking neuron model of cortical broadcast and competition. Conscious Cogn 17:288-303 [Journal] [PubMed]
   A spiking model of cortical broadcast and competition (Shanahan 2008) [Model]
Sidiropoulou K, Poirazi P (2012) Predictive features of persistent activity emergence in regular spiking and intrinsic bursting model neurons. PLoS Comput Biol 8:e1002489 [Journal] [PubMed]
   Layer V PFC pyramidal neuron used to study persistent activity (Sidiropoulou & Poirazi 2012) [Model]
Song P, Wang XJ (2005) Angular path integration by moving "hill of activity": a spiking neuron model without recurrent excitation of the head-direction system. J Neurosci 25:1002-14 [Journal] [PubMed]
Wu S, Amari S (2005) Computing with continuous attractors: stability and online aspects. Neural Comput 17:2215-39 [Journal] [PubMed]
Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S (2015) Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells. PLoS Biol 13:e1002319 [Journal] [PubMed]
   AOB mitral cell: persistent activity without feedback (Zylbertal et al., 2015) [Model]
(32 refs)