Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Nisenbaum ES, Xu ZC, Wilson CJ (1994) Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J Neurophysiol 71:1174-89 [PubMed]

References and models cited by this paper

References and models that cite this paper

Delord B, Baraduc P, Costalat R, Burnod Y, Guigon E (2000) A model study of cellular short-term memory produced by slowly inactivating potassium conductances. J Comput Neurosci 8:251-73 [PubMed]
Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26 [Journal] [PubMed]
   Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009) [Model]
Kepecs A, Raghavachari S (2007) Gating information by two-state membrane potential fluctuations. J Neurophysiol 97:3015-23 [Journal] [PubMed]
Mahon S, Deniau JM, Charpier S, Delord B (2000) Role of a striatal slowly inactivating potassium current in short-term facilitation of corticostriatal inputs: a computer simulation study. Learn Mem 7:357-62 [PubMed]
   Striatal Output Neuron (Mahon, Deniau, Charpier, Delord 2000) [Model]
Shen W, Hernandez-Lopez S, Tkatch T, Held JE, Surmeier DJ (2004) Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. J Neurophysiol 91:1337-49 [Journal] [PubMed]
Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080-95 [Journal] [PubMed]
   Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005) [Model]
Yang CR, Seamans JK, Gorelova N (1999) Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology 21:161-94 [Journal] [PubMed]
(7 refs)