Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Kempter R, Gerstner W, van Hemmen JL (2001) Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural Comput 13:2709-41 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bohte SM, Mozer MC (2007) Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural Comput 19:371-403 [Journal] [PubMed]
Brader JM, Senn W, Fusi S (2007) Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput 19:2881-912 [Journal] [PubMed]
Brette R (2006) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput 18:2004-27 [Journal] [PubMed]
Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16:885-940 [Journal] [PubMed]
Florian RV (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput 19:1468-502 [Journal] [PubMed]
Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87:404-15 [Journal] [PubMed]
Legenstein R, Maass W (2011) Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J Neurosci 31:10787-802 [Journal] [PubMed]
Legenstein R, Naeger C, Maass W (2005) What can a neuron learn with spike-timing-dependent plasticity? Neural Comput 17:2337-82 [Journal] [PubMed]
Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 4:e1000180 [Journal] [PubMed]
   Reward modulated STDP (Legenstein et al. 2008) [Model]
Masquelier T, Hugues E, Deco G, Thorpe SJ (2009) Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. J Neurosci 29:13484-93 [Journal] [PubMed]
   Oscillations, phase-of-firing coding and STDP: an efficient learning scheme (Masquelier et al. 2009) [Model]
Masquelier T, Portelli G, Kornprobst P (2016) Microsaccades enable efficient synchrony-based coding in the retina: a simulation study. Sci Rep 6:24086 [Journal] [PubMed]
   Microsaccades and synchrony coding in the retina (Masquelier et al. 2016) [Model]
Masuda N, Aihara K (2004) Self-organizing dual coding based on spike-time-dependent plasticity. Neural Comput 16:627-63 [Journal] [PubMed]
Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437-67 [Journal] [PubMed]
Pedrosa V, Clopath C (2017) The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci. 8:38 [Journal]
   A simple model of neuromodulatory state-dependent synaptic plasticity (Pedrosa and Clopath, 2016) [Model]
Rabinowitch I, Segev I (2006) The endurance and selectivity of spatial patterns of long-term potentiation/depression in dendrites under homeostatic synaptic plasticity. J Neurosci 26:13474-84 [Journal] [PubMed]
   Homeostatic synaptic plasticity (Rabinowitch and Segev 2006a,b) [Model]
Rumsey CC, Abbott LF (2004) Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J Neurophysiol 91:2273-80 [Journal] [PubMed]
Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16:595-625 [Journal] [PubMed]
Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural Comput 19:639-71 [Journal] [PubMed]
Wörgötter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17:245-319 [Journal] [PubMed]
(19 refs)