Legends: | Link to a Model | Reference cited by multiple papers |
References and models cited by this paper | References and models that cite this paper | |||||||||||||||
Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl:1178-83 [Journal] [PubMed] Barak O, Tsodyks M (2006) Recognition by variance: learning rules for spatiotemporal patterns. Neural Comput 18:2343-58 [Journal] [PubMed] Clopath C, Büsing L, Vasilaki E, Gerstner W (2010) Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat Neurosci 13:344-52 [Journal] [PubMed]
Falconbridge MS, Stamps RL, Badcock DR (2005) A Simple Hebbian/Anti-Hebbian Network Learns the Sparse, Independent Components of Natural Images Neural Comput 18:415-429 Fiori S (2005) Nonlinear complex-valued extensions of Hebbian learning: an essay. Neural Comput 17:779-838 [Journal] [PubMed] Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19:1120-36 [Journal] [PubMed]
Gabbiani F, Cox SJ (2010) Mathematics for Neuroscientists :1-486 [Journal]
Gerstner W, Kistler WM (2002) Mathematical formulations of Hebbian learning. Biol Cybern 87:404-15 [Journal] [PubMed] King PD, Zylberberg J, DeWeese MR (2013) Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. J Neurosci 33:5475-85 [Journal] [PubMed]
O'Reilly RC, Frank MJ (2005) Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia Neural Comput 18:283-328 O'Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:283-328 [Journal] [PubMed] Porr B, Wörgötter F (2006) Strongly improved stability and faster convergence of temporal sequence learning by using input correlations only. Neural Comput 18:1380-412 [Journal] [PubMed] Porr B, Wörgötter F (2007) Learning with "relevance": using a third factor to stabilize Hebbian learning. Neural Comput 19:2694-719 [Journal] [PubMed] Sadeh S, Clopath C, Rotter S (2015) Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 11:e1004307 [Journal] [PubMed]
Saudargiene A, Porr B, Wörgötter F (2004) How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput 16:595-625 [Journal] [PubMed] Soman K, Chakravarthy S, Yartsev MM (2018) A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space. Nat Commun 9:4046 [Journal] [PubMed]
Toyoizumi T, Kaneko M, Stryker MP, Miller KD (2014) Modeling the dynamic interaction of Hebbian and homeostatic plasticity. Neuron 84:497-510 [Journal] [PubMed]
Toyoizumi T, Pfister JP, Aihara K, Gerstner W (2007) Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural Comput 19:639-71 [Journal] [PubMed] Tsai KY, Carnevale NT, Brown TH (1994) Hebbian learning is jointly controlled by electrotonic and input structure Network 5:1-19 |