Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. Journal Of Physical Chemistry 81:2340-2361

References and models cited by this paper

References and models that cite this paper

Acker CD, Kopell N, White JA (2003) Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. J Comput Neurosci 15:71-90 [PubMed]
Cannon RC, O'Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol [Journal] [PubMed]
   Stochastic ion channels and neuronal morphology (Cannon et al. 2010) [Model]
Chen W, De Schutter E (2014) Python-based geometry preparation and simulation visualization toolkits for STEPS. Front Neuroinform 8:37 [Journal] [PubMed]
   Python-based toolkits for STEPS (Chen and De Schutter 2014) [Model]
Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuations. Biophys J 71:3013-21 [Journal] [PubMed]
   Spontaneous firing caused by stochastic channel gating (Chow, White 1996) [Model]
Cunningham MO, Pervouchine DD, Racca C, Kopell NJ, Davies CH, Jones RS, Traub RD, Whittington(2006a) Appendix to: Neuronal metabolism governs cortical network response state. Proc Natl Acad Sci U S A 103:5597601 [Journal]
Dangerfield CE, Kay D, Burrage K (2012) Modeling ion channel dynamics through reflected stochastic differential equations Phys Rev E 85(5):051907 [Journal]
   Reflected SDE Hodgkin-Huxley Model (Dangerfield et al. 2012) [Model]
Denizot A, Arizono M, Nägerl UV, Soula H, Berry H (2019) Simulation of calcium signaling in fine astrocytic processes: Effect of spatial properties on spontaneous activity. PLoS Comput Biol 15:e1006795 [Journal] [PubMed]
   Simulation of calcium signaling in fine astrocytic processes (Denizot et al 2019) [Model]
Gewaltig MO, Cannon R (2014) Current practice in software development for computational neuroscience and how to improve it. PLoS Comput Biol 10:e1003376 [Journal] [PubMed]
Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E (2011) Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons. Phys Rev E Stat Nonlin Soft Matter Phys 83:041908 [Journal] [PubMed]
   On stochastic diff. eq. models for ion channel noise in Hodgkin-Huxley neurons (Goldwyn et al. 2010) [Model]
Hamer RD, Nicholas SC, Tranchina D, Lamb TD, Jarvinen JL (2005) Toward a unified model of vertebrate rod phototransduction. Vis Neurosci 22:417-36 [Journal] [PubMed]
Helfer P, Shultz TR (2018) Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS Comput Biol 14:e1006147 [Journal] [PubMed]
   PKMZ synthesis and AMPAR regulation in late long-term synaptic potentiation (Helfer & Shultz 2018) [Model]
Helfer P, Shultz TR (2018) Coupled feedback loops maintain synaptic long-term potentiation: A computational model arXiv [Journal]
   PKMZ synthesis and AMPAR regulation in late long-term synaptic potentiation (Helfer & Shultz 2018) [Model]
Hituri K, Linne ML (2013) Comparison of models for IP3 receptor kinetics using stochastic simulations. PLoS One 8:e59618 [Journal] [PubMed]
   IP3R model comparison (Hituri and Linne 2013) [Model]
Kilinc D, Demir A (2017) Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques. IEEE Trans Biomed Circuits Syst 11:958-974 [Journal] [PubMed]
   A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018) [Model]
Kilinc D,Demir A (2015) Simulation of noise in neurons and neuronal circuits Proceedings of the IEEE/ACM international conference on computer-aided design (ICCAD) :589-596 [Journal]
   A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018) [Model]
Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152 [Journal] [PubMed]
Marella S, Ermentrout B (2010) Amplification of asynchronous inhibition-mediated synchronization by feedback in recurrent networks. PLoS Comput Biol 6:e1000679 [Journal] [PubMed]
Miller P, Wang XJ (2006) Stability of discrete memory states to stochastic fluctuations in neuronal systems. Chaos 16:026109 [Journal] [PubMed]
Mino H, Rubinstein JT, White JA (2002) Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann Biomed Eng 30:578-87 [PubMed]
Nguyen V, Mathias R, Smith GD (2005) A stochastic automata network descriptor for Markov chain models of instantaneously coupled intracellular Ca2+ channels. Bull Math Biol 67:393-432 [Journal] [PubMed]
   Stochastic automata network Markov model descriptors of coupled Ca2+ channels (Nguyen et al. 2005) [Model]
Pervouchine DD, Netoff TI, Rotstein HG, White JA, Cunningham MO, Whittington MA, Kopell NJ (2006) Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural Comput 18:2617-50 [Journal] [PubMed]
Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19:1215-50 [Journal] [PubMed]
Stanley DA, Bardakjian BL, Spano ML, Ditto WL (2011) Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains. J Comput Neurosci 31:647-66 [Journal] [PubMed]
   CA1 pyramidal: Stochastic amplification of KCa in Ca2+ microdomains (Stanley et al. 2011) [Model]
Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]
   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]
(28 refs)