Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. Mathematical Topics in Population Biology, Morphogenesis, and Neurosciences., Teramoto E:Yamaguti M, ed. pp.267

References and models cited by this paper

References and models that cite this paper

Alidousti J, Ghaziani RK (2017) Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model Mathematical Models and Computer Simulations 9:390-403 [Journal]
Atherton LA, Prince LY, Tsaneva-Atanasova K (2016) Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. J Comput Neurosci 41:91-106 [Journal] [PubMed]
   Fully continuous Pinsky-Rinzel model for bifurcation analysis (Atherton et al. 2016) [Model]
Bertram R, Rhoads J, Cimbora WP (2008) A phantom bursting mechanism for episodic bursting. Bull Math Biol 70:1979-93 [Journal] [PubMed]
   A phantom bursting mechanism for episodic bursting (Bertram et al 2008) [Model]
Breen BJ, Gerken WC, Butera RJ (2003) Hybrid integrate-and-fire model of a bursting neuron. Neural Comput 15:2843-62 [Journal] [PubMed]
Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382-97 [Journal] [PubMed]
   Respiratory pacemaker neurons (Butera et al 1999) [Model]
Canavier CC, Clark JW, Byrne JH (1991) Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol 66:2107-24 [Journal] [PubMed]
   Bursting activity of neuron R15 in Aplysia (Canavier et al 1991, Butera et al 1995) [Model]
Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65:1538-52 [Journal] [PubMed]
   Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018) [Model]
Diekman CO, Thomas PJ, Wilson CG (2017) Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. J Neurophysiol 118:2194-2215 [Journal] [PubMed]
   Respiratory control model with brainstem CPG and sensory feedback (Diekman, Thomas, and Wilson 2017) [Model]
Doiron B, Laing C, Longtin A, Maler L (2002) Ghostbursting: a novel neuronal burst mechanism. J Comput Neurosci 12:5-25 [PubMed]
Ermentrout GB, Terman DH (2010) Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics, Antman SS:Marsden JE:Sirovich L:Wiggins, ed. pp.1 [Journal]
   Mathematical Foundations of Neuroscience (Ermentrout and Terman 2010) [Model]
Li YX, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397-410 [PubMed]
   Bursting in dopamine neurons (Li YX et al 1996) [Model]
Mishra D, Yadav A, Ray S, Kalra PK (2005) Nonlinear Dynamical Analysis on Coupled Modified Fitzhugh-Nagumo Neuron Model Advances in Neural Network - ISNN 2005 , Lecture notes in Computer Science 3496/2005:95-101 [Journal]
Phillips AJ, Robinson PA (2007) A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167-79 [Journal] [PubMed]
   Quantitative model of sleep-wake dynamics (Phillips & Robinson 2007) [Model]
Shorten PR, Wall DJ (2000) A Hodgkin-Huxley model exhibiting bursting oscillations. Bull Math Biol 62:695-715 [Journal] [PubMed]
Teka W, Tabak J, Bertram R (2012) The relationship between two fast/slow analysis techniques for bursting oscillations. Chaos 22:043117 [Journal] [PubMed]
   The relationship between two fast/slow analysis techniques for bursting oscill. (Teka et al. 2012) [Model]
Toporikova N, Tabak J, Freeman ME, Bertram R (2008) A-type K(+) current can act as a trigger for bursting in the absence of a slow variable. Neural Comput 20:436-51 [Journal] [PubMed]
Vo T, Bertram R, Tabak J, Wechselberger M (2010) Mixed mode oscillations as a mechanism for pseudo-plateau bursting. J Comput Neurosci 28:443-58 [Journal] [PubMed]
   Mixed mode oscillations as a mechanism for pseudo-plateau bursting (Vo et al. 2010) [Model]
Yu N, Canavier CC (2015) A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. J Math Neurosci 5:5 [Journal] [PubMed]
   Phase plane reveals two slow variables in midbrain dopamine neuron bursts (Yu and Canavier, 2015) [Model]
(19 refs)