Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401-17 [PubMed]

References and models cited by this paper

References and models that cite this paper

Bahmer A, Langner G (2006) Oscillating neurons in the cochlear nucleus: II. Simulation results. Biol Cybern 95:381-92 [Journal] [PubMed]
   Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007) [Model]
Bahmer A, Langner G (2009) A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons. Biol Cybern 100:21-33 [Journal] [PubMed]
   Oscillating neurons in the cochlear nucleus (Bahmer Langner 2006a, b, and 2007) [Model]
Heinz MG, Colburn HS, Carney LH (2001) Evaluating auditory performance limits: i. one-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273-316 [Journal] [PubMed]
   Auditory nerve model with linear tuning (Heinz et al 2001) [Model]
Jercog PE, Svirskis G, Kotak VC, Sanes DH, Rinzel J (2010) Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system. PLoS Biol 8:e1000406 [Journal] [PubMed]
   Two Models for synaptic input statistics for the MSO neuron model (Jercog et al. 2010) [Model]
Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state. J Comput Neurosci 14:91-110 [PubMed]
Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. J Comput Neurosci 14:71-90 [PubMed]
Krishna BS (2002) A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve. J Comput Neurosci 13:71-91 [PubMed]
Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173-86 [PubMed]
   Model of neural responses to amplitude-modulated tones (Nelson and Carney 2004) [Model]
Peterson AJ, Heil P (2018) A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hear Res 363:1-27 [Journal] [PubMed]
Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007-20 [PubMed]
   Auditory nerve response model (Tan, Carney 2003) [Model]
Zhang X, Carney LH (2005) Analysis of models for the synapse between the inner hair cell and the auditory nerve. J Acoust Soc Am 118:1540-53 [PubMed]
   Models analysis for auditory-nerve synapse (Zhang and Carney 2005) [Model]
Zhang X, Carney LH (2005) Response properties of an integrate-and-fire model that receives subthreshold inputs. Neural Comput 17:2571-601 [Journal] [PubMed]
   Response properties of an integrate and fire model (Zhang and Carney 2005) [Model]
Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648-70 [PubMed]
   Auditory nerve response model (Zhang et al 2001) [Model]
Zhou Y, Carney LH, Colburn HS (2005) A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J Neurosci 25:3046-58 [Journal] [PubMed]
   A model for interaural time difference sensitivity in the medial superior olive (Zhou et al 2005) [Model]
Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446-66 [PubMed]
   Cat auditory nerve model (Zilany and Bruce 2006, 2007) [Model]
Zilany MS, Bruce IC, Carney LH (2014) Updated parameters and expanded simulation options for a model of the auditory periphery. J Acoust Soc Am 135:283-6 [Journal] [PubMed]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]
Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390-412 [Journal] [PubMed]
   Long-term adaptation with power-law dynamics (Zilany et al. 2009) [Model]
   Cochlea: inner ear models in Python (Zilany et al 2009, 2014; Holmberg M 2007) [Model]
(17 refs)