Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24 [PubMed]

   Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001)

   Thalamocortical Relay cell under current clamp in high-conductance state (Zeldenrust et al 2018)

References and models cited by this paper

References and models that cite this paper

Barrett JN (1975) Motoneuron dendrites: role in synaptic integration. Fed Proc 34:1398-407 [PubMed]
Bernander O, Douglas RJ, Martin KA, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci U S A 88:11569-73 [PubMed]
Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369-73 [Journal] [PubMed]
Contreras D, Destexhe A, Steriade M (1997) Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J Neurophysiol 78:335-50 [Journal] [PubMed]
Cragg BG (1967) The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J Anat 101:639-54 [PubMed]
DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563-607 [PubMed]
Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531-47 [Journal] [PubMed]
   NN activity impact on neocortical pyr. neurons integrative properties in vivo (Destexhe & Pare 1999) [Model]
Douglas RJ, Martin KA, Whitteridge D (1991) An intracellular analysis of the visual responses of neurones in cat visual cortex. J Physiol 440:659-96 [PubMed]
Fellous JM, Houweling AR, Modi RH, Rao RP, Tiesinga PH, Sejnowski TJ (2001) Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. J Neurophysiol 85:1782-7 [Journal] [PubMed]
Feng J, Brown D (2000) Impact of correlated inputs on the output of the integrate- and-fire model. Neural Comput 12:671-92 [PubMed]
Harsch A, Robinson HP (2000) Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J Neurosci 20:6181-92 [PubMed]
Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179-209 [PubMed]
Hô N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J Neurophysiol 84:1488-96 [Journal] [PubMed]
Holmes WR, Woody CD (1989) Effects of uniform and non-uniform synaptic 'activation-distributions' on the cable properties of modeled cortical pyramidal neurons. Brain Res 505:12-22 [PubMed]
Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-6 [PubMed]
Matsumura M, Cope T, Fetz EE (1988) Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp Brain Res 70:463-9 [PubMed]
McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337-88 [PubMed]
McCormick DA, Wang Z, Huguenard J (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb Cortex 3:387-98 [PubMed]
Paré D, Lebel E, Lang EJ (1997) Differential impact of miniature synaptic potentials on the soma and dendrites of pyramidal neurons in vivo. J Neurophysiol 78:1735-9 [Journal] [PubMed]
Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. J Neurophysiol 79:1450-60 [Journal] [PubMed]
Ricciardi LM, Sacerdote L (1979) The Ornstein-Uhlenbeck process as a model for neuronal activity. I. Mean and variance of the firing time. Biol Cybern 35:1-9 [PubMed]
Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193-209 [PubMed]
Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870-96 [Journal] [PubMed]
Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389-94 [PubMed]
Smith CE (1992) A note on neuronal firing and input variability. J Theor Biol 154:271-5 [PubMed]
Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334-50 [PubMed]
Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nat Neurosci 1:210-7 [Journal] [PubMed]
Svirskis G, Rinzel J (2000) Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons. Biophys J 79:629-37 [Journal] [PubMed]
Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373:33-6 [Journal] [PubMed]
Anderson WD, Makadia HK, Vadigepalli R (2016) Molecular variability elicits a tunable switch with discrete neuromodulatory response phenotypes. J Comput Neurosci 40:65-82 [Journal] [PubMed]
   Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015) [Model]
Aradi I, Santhakumar V, Chen K, Soltesz I (2002) Postsynaptic effects of GABAergic synaptic diversity: regulation of neuronal excitability by changes in IPSC variance. Neuropharmacology 43:511-22 [PubMed]
Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274-84 [Journal] [PubMed]
   Input Fluctuations effects on f-I curves (Arsiero et al. 2007) [Model]
Azouz R (2005) Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. J Neurophysiol 94:2785-96 [Journal] [PubMed]
Badel L, Lefort S, Brette R, Petersen CC, Gerstner W, Richardson MJ (2008) Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99:656-66 [Journal] [PubMed]
Behuret S, Deleuze C, Gomez L, Fregnac Y, Bal T (2013) Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway PLoS Computational Biology 9(12):e1003401 [Journal] [PubMed]
   A Model Circuit of Thalamocortical Convergence (Behuret et al. 2013) [Model]
Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM (2012) Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 107:364-83 [Journal] [PubMed]
   Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012) [Model]
Booth V, Poe GR (2006) Input source and strength influences overall firing phase of model hippocampal CA1 pyramidal cells during theta: relevance to REM sleep reactivation and memory consolidation. Hippocampus 16:161-73 [Journal] [PubMed]
Breakspear M, Terry JR, Friston KJ (2003) Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14:703-32 [Journal] [PubMed]
Brette R (2006) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput 18:2004-27 [Journal] [PubMed]
Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637-42 [Journal] [PubMed]
   Adaptive exponential integrate-and-fire model (Brette & Gerstner 2005) [Model]
Carnevale NT, Morse TM (1996-2009) Research reports that have used NEURON Web published citations at the NEURON website [Journal]
Cavallari S, Panzeri S, Mazzoni A (2014) Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Front Neural Circuits 8:12 [Journal] [PubMed]
   I&F recurrent networks with current- or conductance-based synapses (Cavallari et al. 2014) [Model]
Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M (2016) Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Front Comput Neurosci 10:67 [Journal] [PubMed]
   Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018) [Model]
Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 [Journal] [PubMed]
   Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012) [Model]
Chance FS (2007) Receiver operating characteristic (ROC) analysis for characterizing synaptic efficacy. J Neurophysiol 97:1799-808 [Journal] [PubMed]
Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773-82 [PubMed]
Debay D, Wolfart J, Le Franc Y, Le Masson G, Bal T (2004) Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. J Physiol Paris 98:540-58 [Journal] [PubMed]
Desai NS, Walcott EC (2006) Synaptic bombardment modulates muscarinic effects in forelimb motor cortex. J Neurosci 26:2215-26 [Journal] [PubMed]
Destexhe A, Badoual M, Piwkowska Z, Bal T, Rudolph M (2004) A novel method for characterizing synaptic noise in cortical neurons Neurocomputing 58:191-196
Destexhe A, Rudolph M (2004) Extracting information from the power spectrum of synaptic noise. J Comput Neurosci 17:327-45 [Journal] [PubMed]
Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [Journal] [PubMed]
Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811-29 [PubMed]
Földy C, Aradi I, Howard A, Soltesz I (2004) Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations. Eur J Neurosci 19:119-30 [PubMed]
Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24:11046-56 [Journal] [PubMed]
   CA1 pyramidal neuron: dendritic spike initiation (Gasparini et al 2004) [Model]
Gutkin B, Ermentrout GB, Rudolph M (2003) Spike generating dynamics and the conditions for spike-time precision in cortical neurons. J Comput Neurosci 15:91-103 [Journal] [PubMed]
Haeusler S, Maass W (2007) A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cereb Cortex 17:149-62 [Journal] [PubMed]
   Information-processing in lamina-specific cortical microcircuits (Haeusler and Maass 2006) [Model]
Higley MJ, Contreras D (2006) Balanced excitation and inhibition determine spike timing during frequency adaptation. J Neurosci 26:448-57 [Journal] [PubMed]
Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography
Hoch T, Wenning G, Obermayer K (2003) Optimal noise-aided signal transmission through populations of neurons. Phys Rev E Stat Nonlin Soft Matter Phys 68:011911 [Journal] [PubMed]
Hong S, Ratté S, Prescott SA, De Schutter E (2012) Single neuron firing properties impact correlation-based population coding. J Neurosci 32:1413-28 [Journal] [PubMed]
   A model for how correlation depends on the neuronal excitability type (Hong et al. 2012) [Model]
Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959-76 [Journal] [PubMed]
   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]
Kitano K, Fukai T (2007) Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. J Comput Neurosci 23:237-50 [Journal] [PubMed]
Köndgen H, Geisler C, Fusi S, Wang XJ, Lüscher HR, Giugliano M (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex 18:2086-97 [Journal] [PubMed]
   Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008) [Model]
La Camera G, Rauch A, Lüscher HR, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comput 16:2101-24 [Journal] [PubMed]
Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 4:e1000180 [Journal] [PubMed]
   Reward modulated STDP (Legenstein et al. 2008) [Model]
Linaro D, Couto J, Giugliano M (2014) Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. J Neurosci Methods 230:5-19 [Journal] [PubMed]
   Phase response curves firing rate dependency of rat purkinje neurons in vitro (Couto et al 2015) [Model]
Linaro D, Ocker GK, Doiron B, Giugliano M (2019) Correlation Transfer by Layer 5 Cortical Neurons Under Recreated Synaptic Inputs In Vitro. J Neurosci 39:7648-7663 [Journal] [PubMed]
   L5 cortical neurons with recreated synaptic inputs in vitro correlation transfer (Linaro et al 2019) [Model]
Lundstrom BN, Famulare M, Sorensen LB, Spain WJ, Fairhall AL (2009) Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons J Comput Neurosci [Journal]
   Hodgkin-Huxley simplifed 2D and 3D models (Lundstrom et al. 2009) [Model]
Maass W, Joshi P, Sontag ED (2007) Computational aspects of feedback in neural circuits. PLoS Comput Biol 3:e165 [Journal] [PubMed]
   Computational aspects of feedback in neural circuits (Maass et al 2006) [Model]
Martínez L, Pérez T, Mirasso CR, Manjarrez E (2007) Stochastic resonance in the motor system: effects of noise on the monosynaptic reflex pathway of the cat spinal cord. J Neurophysiol 97:4007-16 [Journal] [PubMed]
Meffin H, Burkitt AN, Grayden DB (2004) An analytical model for the "large, fluctuating synaptic conductance state" typical of neocortical neurons in vivo. J Comput Neurosci 16:159-75 [Journal] [PubMed]
Migliore M, De Blasi I, Tegolo D, Migliore R (2011) A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior. Neural Netw 24:552-9 [Journal] [PubMed]
   CA1 pyramidal neuron: schizophrenic behavior (Migliore et al. 2011) [Model]
Migliore R, De Simone G, Leinekugel X, Migliore M (2017) The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons. Eur J Neurosci 45:1024-1031 [Journal] [PubMed]
   Effects of electric fields on cognitive functions (Migliore et al 2016) [Model]
Morse TM (2008) ModelDB in computational neuroscience education - a research tool as interactive educational media. Brains Minds Media, Lorenz S, Egelhaaf M, ed. pp.bmm1409 [Journal] [PubMed]
Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19:2958-3010 [Journal] [PubMed]
Murphy BK, Miller KD (2003) Multiplicative gain changes are induced by excitation or inhibition alone. J Neurosci 23:10040-51 [PubMed]
Ozer M, Graham LJ, Erkaymaz O, Uzuntarla M (2007) Impact of synaptic noise and conductance state on spontaneous cortical firing. Neuroreport 18:1371-4 [Journal] [PubMed]
Palmer SE, Miller KD (2007) Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1. J Neurophysiol 98:63-78 [Journal] [PubMed]
Pena RFO, Zaks MA, Roque AC (2018) Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise : Spontaneous activity in networks with synaptic noise. J Comput Neurosci 45:1-28 [Journal] [PubMed]
   Dynamics in random NNs with multiple neuron subtypes (Pena et al 2018, Tomov et al 2014, 2016) [Model]
Platkiewicz J, Brette R (2010) A threshold equation for action potential initiation. PLoS Comput Biol 6:e1000850 [Journal] [PubMed]
   A threshold equation for action potential initiation (Platkiewicz & Brette 2010) [Model]
Platkiewicz J, Brette R (2011) Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Comput Biol 7:e1001129 [Journal] [PubMed]
   Impact of fast Na channel inact. on AP threshold & synaptic integration (Platkiewicz & Brette 2011) [Model]
Pospischil M, Piwkowska Z, Rudolph M, Bal T, Destexhe A (2007) Calculating event-triggered average synaptic conductances from the membrane potential. J Neurophysiol 97:2544-52 [Journal] [PubMed]
   Code to calc. spike-trig. ave (STA) conduct. from Vm (Pospischil et al. 2007, Rudolph et al. 2007) [Model]
Powers RK, Elbasiouny SM, Rymer WZ, Heckman CJ (2012) Contribution of intrinsic properties and synaptic inputs to motoneuron discharge patterns: a simulation study. J Neurophysiol 107:808-23 [Journal] [PubMed]
   Simulations of motor unit discharge patterns (Powers et al. 2011) [Model]
Powers RK, Heckman CJ (2015) Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study. J Neurophysiol 114:184-98 [Journal] [PubMed]
   Discharge hysteresis in motoneurons (Powers & Heckman 2015) [Model]
Powers RK, Heckman CJ (2017) Synaptic control of the shape of the motoneuron pool input-output function. J Neurophysiol 117:1171-1184 [Journal] [PubMed]
   Motoneuron pool input-output function (Powers & Heckman 2017) [Model]
Prescott SA, De Koninck Y (2003) Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc Natl Acad Sci U S A 100:2076-81 [Journal] [PubMed]
Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ (2006) Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. J Neurosci 26:9084-97 [Journal] [PubMed]
Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ (2008) Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. J Neurophysiol 100:3030-42 [Journal] [PubMed]
   Pyramidal neurons switch from integrators to resonators (Prescott et al. 2008) [Model]
Reinker S, Puil E, Miura RM (2004) Membrane resonance and stochastic resonance modulate firing patterns of thalamocortical neurons. J Comput Neurosci 16:15-25 [PubMed]
Richardson MJ, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17:923-47 [Journal] [PubMed]
Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J (2014) Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Front Cell Neurosci 8:304 [Journal] [PubMed]
   Information transmission in cerebellar granule cell models (Rossert et al. 2014) [Model]
Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19:1215-50 [Journal] [PubMed]
Rudolph M, Destexhe A (2002) Point-conductance models of cortical neurons with high discharge variability Neurocomputing 44-46:147-152
Rudolph M, Destexhe A (2003) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J Neurosci 23:2466-76 [PubMed]
Rudolph M, Destexhe A (2003) Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput 15:2577-618 [Journal] [PubMed]
Rudolph M, Destexhe A (2003) The discharge variability of neocortical neurons during high-conductance states. Neuroscience 119:855-73 [PubMed]
Rudolph M, Destexhe A (2004) Inferring network activity from synaptic noise. J Physiol Paris 98:452-66 [Journal] [PubMed]
Rudolph M, Destexhe A (2005) An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural Comput 17:2301-15 [Journal] [PubMed]
   Steady-state Vm distribution of neurons subject to synaptic noise (Rudolph, Destexhe 2005) [Model]
Rudolph M, Destexhe A (2006) On the use of analytical expressions for the voltage distribution to analyze intracellular recordings. Neural Comput 18:2917-22 [Journal] [PubMed]
Rudolph M, Destexhe A (2006) Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Comput 18:2146-210 [Journal] [PubMed]
Rudolph M, Pelletier JG, Pare D, Destexhe A (2004) Estimation of synaptic conductances and their variances from intracellular recordings of neocortical neurons in vivo Neurocomputing 58:387-392
Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280-90 [Journal] [PubMed]
   Code to calc. spike-trig. ave (STA) conduct. from Vm (Pospischil et al. 2007, Rudolph et al. 2007) [Model]
Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [Journal] [PubMed]
   Dentate gyrus network model (Santhakumar et al 2005) [Model]
   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]
Shu Y, Duque A, Yu Y, Haider B, McCormick DA (2007) Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 97:746-60 [Journal] [PubMed]
   Intracortical synaptic potential modulation by presynaptic somatic potential (Shu et al. 2006, 2007) [Model]
Spera E, Migliore M, Unsworth N, Tegolo D (2016) On the cellular mechanisms underlying working memory capacity in humans Neural Network World 4:335-359 [Journal]
   Model of CA1 activity during working memory task (Spera et al. 2016) [Model]
Stiefel KM, Englitz B, Sejnowski TJ (2013) Origin of intrinsic irregular firing in cortical interneurons. Proc Natl Acad Sci U S A 110:7886-91 [Journal] [PubMed]
Thomas EA, Petrou S (2013) Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54:1195-202 [Journal] [PubMed]
   State dependent drug binding to sodium channels in the dentate gyrus (Thomas & Petrou 2013) [Model]
Tiesinga PH (2005) Stimulus competition by inhibitory interference. Neural Comput 17:2421-53 [Journal] [PubMed]
Tiesinga PH, Fellous JM, José JV, Sejnowski TJ (2002) Information transfer in entrained cortical neurons. Network 13:41-66 [PubMed]
Vierling-Claassen D, Cardin JA, Moore CI, Jones SR (2010) Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Front Hum Neurosci 4:198 [Journal] [PubMed]
   Engaging distinct oscillatory neocortical circuits (Vierling-Claassen et al. 2010) [Model]
Wenning G, Obermayer K (2003) Activity driven adaptive stochastic resonance. Phys Rev Lett 90:120602 [Journal] [PubMed]
Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760-7 [Journal] [PubMed]
Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual decisions. J Neurosci 26:1314-28 [Journal] [PubMed]
Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28:7260-72 [Journal] [PubMed]
   AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008) [Model]
(124 refs)