Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Izhikevich EM (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting

   Artificial neuron model (Izhikevich 2003, 2004, 2007)

References and models cited by this paper

References and models that cite this paper

Ahn S, Rubchinsky LL (2017) Potential Mechanisms and Functions of Intermittent Neural Synchronization. Front Comput Neurosci 11:44 [Journal] [PubMed]
Akin M, Onderdonk A, Guo Y (2017) Effects of local network topology on the functional reconstruction of spiking neural network models. Appl Netw Sci 2:22 [Journal] [PubMed]
Balachandar A, Prescott SA (2018) Origin of heterogeneous spiking patterns from continuously distributed ion channel densities: a computational study in spinal dorsal horn neurons. J Physiol 596:1681-1697 [Journal] [PubMed]
   Origin of heterogeneous spiking patterns in spinal dorsal horn neurons (Balachandar & Prescott 2018) [Model]
Barreto E, Cressman JR (2011) Ion concentration dynamics as a mechanism for neuronal bursting. J Biol Phys 37:361-73 [Journal] [PubMed]
   Ion concentration dynamics as a mechanism for neuronal bursting (Barreto & Cressman 2011) [Model]
Beverlin B, Kakalios J, Nykamp D, Netoff TI (2012) Dynamical changes in neurons during seizures determine tonic to clonic shift. J Comput Neurosci 33:41-51 [Journal] [PubMed]
   Epileptic seizure model with Morris-Lecar neurons (Beverlin and Netoff 2011) [Model]
Channell P, Fuwape I, Neiman AB, Shilnikov AL (2009) Variability of bursting patterns in a neuron model in the presence of noise. J Comput Neurosci 27:527-42 [Journal] [PubMed]
   Reduced leech heart interneuron (Channell et al. 2009) [Model]
Coggan JS, Ocker GK, Sejnowski TJ, Prescott SA (2011) Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. J Neural Eng 8:065002 [Journal] [PubMed]
   Explaining pathological changes in axonal excitability by dynamical analysis (Coggan et al. 2011) [Model]
Csercsik D, Farkas I, Hrabovszky E, Liposits Z (2012) A simple integrative electrophysiological model of bursting GnRH neurons. J Comput Neurosci 32:119-36 [Journal] [PubMed]
   A simple integrative electrophysiological model of bursting GnRH neurons (Csercsik et al. 2011) [Model]
Daneshzand M, Faezipour M, Barkana BD (2017) Hyperbolic Modeling of Subthalamic Nucleus Cells to Investigate the Effect of Dopamine Depletion. Comput Intell Neurosci 2017:5472752 [Journal] [PubMed]
   Hyperbolic model (Daneshzand et al 2017) [Model]
Diekman CO, Thomas PJ, Wilson CG (2017) Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. J Neurophysiol 118:2194-2215 [Journal] [PubMed]
   Respiratory control model with brainstem CPG and sensory feedback (Diekman, Thomas, and Wilson 2017) [Model]
Doiron B, Oswald AM, Maler L (2007) Interval coding. II. Dendrite-dependent mechanisms. J Neurophysiol 97:2744-57 [Journal] [PubMed]
Ermentrout GB, Terman DH (2010) Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics, Antman SS:Marsden JE:Sirovich L:Wiggins, ed. pp.1 [Journal]
   Mathematical Foundations of Neuroscience (Ermentrout and Terman 2010) [Model]
Fernandez FR, Engbers JD, Turner RW (2007) Firing dynamics of cerebellar purkinje cells. J Neurophysiol 98:278-94 [Journal] [PubMed]
Fountas Z, Shanahan M (2017) The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS One 12:e0189109 [Journal] [PubMed]
   Cortical oscillations and the basal ganglia (Fountas & Shanahan 2017) [Model]
Franci A, Drion G, Sepulchre R (2018) Robust and tunable bursting requires slow positive feedback. J Neurophysiol 119:1222-1234 [Journal] [PubMed]
   Robust and tunable bursting requires slow positive feedback (Franci et al 2018) [Model]
Goldwyn JH, Rubinstein JT, Shea-Brown E (2012) A point process framework for modeling electrical stimulation of the auditory nerve. J Neurophysiol 108:1430-52 [Journal] [PubMed]
   Point process framework for modeling electrical stimulation of auditory nerve (Goldwyn et al. 2012) [Model]
Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D (2007) Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS Comput Biol 3:e156 [Journal] [PubMed]
   Fast-spiking cortical interneuron (Golomb et al. 2007) [Model]
Golomb D, Yue C, Yaari Y (2006) Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J Neurophysiol 96:1912-26 [Journal] [PubMed]
   CA1 pyramidal cell: I_NaP and I_M contributions to somatic bursting (Golomb et al 2006) [Model]
Grimbert F, Faugeras O (2006) Bifurcation analysis of Jansen's neural mass model. Neural Comput 18:3052-68 [Journal] [PubMed]
Gurney KN, Humphries MD, Redgrave P (2015) A new framework for cortico-striatal plasticity: behavioural theory meets in vitro data at the reinforcement-action interface. PLoS Biol 13:e1002034 [Journal] [PubMed]
   Cortico-striatal plasticity in medium spiny neurons (Gurney et al 2015) [Model]
Harish O, Golomb D (2010) Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study. J Neurophysiol 103:2684-99 [Journal] [PubMed]
   Control of vibrissa motoneuron firing (Harish and Golomb 2010) [Model]
Hayut I, Fanselow EE, Connors BW, Golomb D (2011) LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS Comput Biol 7:e1002248 [Journal] [PubMed]
   Rate model of a cortical RS-FS-LTS network (Hayut et al. 2011) [Model]
Hong S, Agüera y Arcas B, Fairhall AL (2007) Single neuron computation: from dynamical system to feature detector. Neural Comput 19:3133-72 [Journal] [PubMed]
Hummos A, Franklin CC, Nair SS (2014) Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus 24:1430-48 [Journal] [PubMed]
   Role for short term plasticity and OLM cells in containing spread of excitation (Hummos et al 2014) [Model]
Humphries MD, Gurney K (2007) Solution methods for a new class of simple model neurons. Neural Comput 19:3216-25 [Journal] [PubMed]
Humphries MD, Lepora N, Wood R, Gurney K (2009) Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front Comput Neurosci 3:26 [Journal] [PubMed]
   Dopamine-modulated medium spiny neuron, reduced model (Humphries et al. 2009) [Model]
Humphries MD, Wood R, Gurney K (2009) Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural Netw 22:1174-88 [Journal] [PubMed]
   Striatal GABAergic microcircuit, dopamine-modulated cell assemblies (Humphries et al. 2009) [Model]
Humphries MD, Wood R, Gurney K (2010) Reconstructing the three-dimensional GABAergic microcircuit of the striatum. PLoS Comput Biol 6:e1001011 [Journal] [PubMed]
   Striatal GABAergic microcircuit, spatial scales of dynamics (Humphries et al, 2010) [Model]
Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569-72 [Journal] [PubMed]
   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]
Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063-70 [Journal] [PubMed]
   Artificial neuron model (Izhikevich 2003, 2004, 2007) [Model]
Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]
   Polychronization: Computation With Spikes (Izhikevich 2005) [Model]
Kilinc D, Demir A (2017) Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques. IEEE Trans Biomed Circuits Syst 11:958-974 [Journal] [PubMed]
   A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018) [Model]
Kömek K, Bard Ermentrout G, Walker CP, Cho RY (2012) Dopamine and gamma band synchrony in schizophrenia--insights from computational and empirical studies. Eur J Neurosci 36:2146-55 [Journal] [PubMed]
   Modeling the effects of dopamine on network synchronization (Komek et al. 2012) [Model]
Krishnan GP, Filatov G, Shilnikov A, Bazhenov M (2015) Electrogenic properties of the Na?/K? ATPase control transitions between normal and pathological brain states. J Neurophysiol 113:3356-74 [Journal] [PubMed]
   Single cell model with variable ion concentrations and Na+/K+ ATPase (Krishnan et al. 2015) [Model]
Lundstrom BN, Famulare M, Sorensen LB, Spain WJ, Fairhall AL (2009) Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons J Comput Neurosci [Journal]
   Hodgkin-Huxley simplifed 2D and 3D models (Lundstrom et al. 2009) [Model]
Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schürmann F, Hines ML (2016) Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Comput 28:2063-90 [Journal] [PubMed]
   Parallelizing large networks in NEURON (Lytton et al. 2016) [Model]
Maia PD, Kutz JN (2014) Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury. J Comput Neurosci 37:317-32 [Journal] [PubMed]
Manis PB, Campagnola L (2018) A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks. Hear Res 360:76-91 [Journal] [PubMed]
   Modelling platform of the cochlear nucleus and other auditory circuits (Manis & Compagnola 2018) [Model]
Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner W (2012) Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. J Neurophysiol 107:1756-75 [Journal] [PubMed]
   Extraction and classification of three cortical neuron types (Mensi et al. 2012) [Model]
Nowotny T, Szücs A, Levi R, Selverston AI (2007) Models wagging the dog: are circuits constructed with disparate parameters? Neural Comput 19:1985-2003 [Journal] [PubMed]
Oh M, Matveev V (2009) Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. J Comput Neurosci 26:303-20 [Journal] [PubMed]
   Loss of phase-locking in non-weakly coupled inhib. networks of type-I neurons (Oh and Matveev 2009) [Model]
Olypher AV, Calabrese RL (2007) Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. J Neurophysiol 98:3749-58 [Journal] [PubMed]
   Activity constraints on stable neuronal or network parameters (Olypher and Calabrese 2007) [Model]
Pena RFO, Zaks MA, Roque AC (2018) Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise : Spontaneous activity in networks with synaptic noise. J Comput Neurosci 45:1-28 [Journal] [PubMed]
   Dynamics in random NNs with multiple neuron subtypes (Pena et al 2018, Tomov et al 2014, 2016) [Model]
Platkiewicz J, Brette R (2011) Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Comput Biol 7:e1001129 [Journal] [PubMed]
   Impact of fast Na channel inact. on AP threshold & synaptic integration (Platkiewicz & Brette 2011) [Model]
Polese D, Martinelli E, Marco S, Di Natale C, Gutierrez-Galvez A (2014) Understanding odor information segregation in the olfactory bulb by means of mitral and tufted cells. PLoS One 9:e109716 [Journal] [PubMed]
   Understanding odor information segregation in the olfactory bulb by MC/TCs (Polese et al. 2014) [Model]
Portfors CV, Roberts PD (2007) Temporal and frequency characteristics of cartwheel cells in the dorsal cochlear nucleus of the awake mouse. J Neurophysiol 98:744-56 [Journal] [PubMed]
Prescott SA, De Koninck Y, Sejnowski TJ (2008) Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput Biol 4:e1000198 [Journal] [PubMed]
   Dynamics of Spike Initiation (Prescott et al. 2008) [Model]
Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ (2008) Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. J Neurophysiol 100:3030-42 [Journal] [PubMed]
   Pyramidal neurons switch from integrators to resonators (Prescott et al. 2008) [Model]
Quax S, Jensen O, Tiesinga P (2017) Top-down control of cortical gamma-band communication via pulvinar induced phase shifts in the alpha rhythm. PLoS Comput Biol 13:e1005519 [Journal] [PubMed]
Rho YA, Prescott SA (2012) Identification of molecular pathologies sufficient to cause neuropathic excitability in primary somatosensory afferents using dynamical systems theory. PLoS Comput Biol 8:e1002524 [Journal] [PubMed]
   Dorsal root ganglion (primary somatosensory) neurons (Rho & Prescott 2012) [Model]
Rössert C, Moore LE, Straka H, Glasauer S (2011) Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise. J Neurosci 31:8359-72 [Journal] [PubMed]
   Frog second-order vestibular neuron models (Rossert et al. 2011) [Model]
Rotstein HG, Oppermann T, White JA, Kopell N (2006) The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J Comput Neurosci 21:271-92 [Journal] [PubMed]
Rubin JE, Smith JC (2019) Robustness of respiratory rhythm generation across dynamic regimes. PLoS Comput Biol 15:e1006860 [Journal] [PubMed]
   Respiratory central pattern generator (mammalian brainstem) (Rubin & Smith 2019) [Model]
Schmerl BA, McDonnell MD (2013) Channel noise induced stochastic facilitation in an auditory brainstem neuron model Physical Review E 88:052722 [Journal] [PubMed]
   Simulating ion channel noise in an auditory brainstem neuron model (Schmerl & McDonnell 2013) [Model]
Shanahan M (2008) A spiking neuron model of cortical broadcast and competition. Conscious Cogn 17:288-303 [Journal] [PubMed]
   A spiking model of cortical broadcast and competition (Shanahan 2008) [Model]
Shao J, Lai D, Meyer U, Luksch H, Wessel R (2009) Generating oscillatory bursts from a network of regular spiking neurons without inhibition. J Comput Neurosci 27:591-606 [Journal] [PubMed]
   Generating oscillatory bursts from a network of regular spiking neurons (Shao et al. 2009) [Model]
Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25:349-65 [Journal] [PubMed]
   Computer simulations of neuron-glia interactions mediated by ion flux (Somjen et al. 2008) [Model]
Stewart RD, Bair W (2009) Spiking neural network simulation: numerical integration with the Parker-Sochacki method. J Comput Neurosci 27:115-33 [Journal] [PubMed]
   Numerical Integration of Izhikevich and HH model neurons (Stewart and Bair 2009) [Model]
Stiefel KM, Gutkin BS, Sejnowski TJ (2009) The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci 26:289-301 [Journal] [PubMed]
   Cortical pyramidal neuron, phase response curve (Stiefel et al 2009) [Model]
Talathi SS, Abarbanel HD, Ditto WL (2008) Temporal spike pattern learning. Phys Rev E Stat Nonlin Soft Matter Phys 78:031918 [Journal] [PubMed]
Tikidji-Hamburyan RA, Canavier CC (2020) Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition is Better for Type 2 Excitability. eNeuro [Journal] [PubMed]
   Cycle skipping in ING Type 1 / Type 2 networks (Tikidji-Hamburyan & Canavier 2020) [Model]
Tomov P, Pena RF, Roque AC, Zaks MA (2016) Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks with Mixtures of Electrophysiological Cell Types. Front Comput Neurosci 10:23 [Journal] [PubMed]
   Dynamics in random NNs with multiple neuron subtypes (Pena et al 2018, Tomov et al 2014, 2016) [Model]
Torben-Nielsen B, Segev I, Yarom Y (2012) The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations. PLoS Comput Biol 8:e1002580 [Journal] [PubMed]
   Inferior Olive, subthreshold oscillations (Torben-Nielsen, Segev, Yarom 2012) [Model]
Viertel R, Borisyuk A (2019) A Computational model of the mammalian external tufted cell. J Theor Biol 462:109-121 [Journal] [PubMed]
   External Tufted Cell Model (Ryan Viertel, Alla Borisyuk 2019) [Model]
Visser S, Van Gils SA (2014) Lumping Izhikevich neurons EPJ Nonlinear Biomedical Physics 25(12):6 [Journal]
   Norns - Neural Network Studio (Visser & Van Gils 2014) [Model]
Vo T, Tabak J, Bertram R, Wechselberger M (2014) A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. J Comput Neurosci 36:259-78 [Journal] [PubMed]
   Understanding how fast activating K+ channels promote bursting in pituitary cells (Vo et al 2014) [Model]
Wei Y, Ullah G, Ingram J, Schiff SJ (2014) Oxygen and seizure dynamics: II. Computational modeling. J Neurophysiol 112:213-23 [Journal] [PubMed]
Wittman S, Abdala AP, Rubin JE (2019) Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome. J Physiol 597:2651-2672 [Journal] [PubMed]
   Respiratory central pattern generator including Kolliker-Fuse nucleus (Wittman et al 2019) [Model]
Wu Z, Guo A, Fu X (2017) Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural Netw 95:72-90 [Journal] [PubMed]
Zandt BJ, Visser S, van Putten MJ, Ten Haken B (2014) A neural mass model based on single cell dynamics to model pathophysiology. J Comput Neurosci 37:549-68 [Journal] [PubMed]
   Neural mass model based on single cell dynamics to model pathophysiology (Zandt et al 2014) [Model]
Zeldenrust F, Chameau PJ, Wadman WJ (2013) Reliability of spike and burst firing in thalamocortical relay cells. J Comput Neurosci 35:317-34 [Journal] [PubMed]
   Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013) [Model]
Zilli EA (2012) Models of grid cell spatial firing published 2005-2011. Front Neural Circuits 6:16 [Journal] [PubMed]
   Grid cell spatial firing models (Zilli 2012) [Model]
Zilli EA, Hasselmo ME (2010) Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing J. Neurosci. 30(41):13850-13860 [Journal]
   Grid cell oscillatory interference with noisy network oscillators (Zilli and Hasselmo 2010) [Model]
Zou X, Coyle D, Wong-Lin K, Maguire L (2012) Beta-amyloid induced changes in A-type K? current can alter hippocampo-septal network dynamics. J Comput Neurosci 32:465-77 [Journal] [PubMed]
Zylbertal A, Yarom Y, Wagner S (2017) Synchronous Infra-Slow Bursting in the Mouse Accessory Olfactory Bulb Emerge from Interplay between Intrinsic Neuronal Dynamics and Network Connectivity. J Neurosci 37:2656-2672 [Journal] [PubMed]
   A network of AOB mitral cells that produces infra-slow bursting (Zylbertal et al. 2017) [Model]
(83 refs)