Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-6 [PubMed]

References and models cited by this paper

References and models that cite this paper

Ahmed B, Anderson JC, Douglas RJ, Martin KA, Whitteridge D (1998) Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cereb Cortex 8:462-76 [PubMed]
Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J Neurosci 23:7750-8 [PubMed]
Arsiero M, Lüscher HR, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27:3274-84 [Journal] [PubMed]
   Input Fluctuations effects on f-I curves (Arsiero et al. 2007) [Model]
Azouz R, Gray CM (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci U S A 97:8110-5 [Journal] [PubMed]
Banerjee A (2006) On the sensitive dependence on initial conditions of the dynamics of networks of spiking neurons. J Comput Neurosci 20:321-48 [Journal] [PubMed]
Brette R (2006) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput 18:2004-27 [Journal] [PubMed]
Brette R (2012) Computing with neural synchrony. PLoS Comput Biol 8:e1002561 [Journal] [PubMed]
   Computing with neural synchrony (Brette 2012) [Model]
Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94:3637-42 [Journal] [PubMed]
   Adaptive exponential integrate-and-fire model (Brette & Gerstner 2005) [Model]
Brette R, Guigon E (2003) Reliability of spike timing is a general property of spiking model neurons. Neural Comput 15:279-308 [Journal] [PubMed]
   Reliability of spike timing is a general property of spiking model neurons (Brette & Guigon 2003) [Model]
Brown E, Moehlis J, Holmes P (2004) On the phase reduction and response dynamics of neural oscillator populations. Neural Comput 16:673-715 [Journal] [PubMed]
Chacron MJ (2006) Nonlinear information processing in a model sensory system. J Neurophysiol 95:2933-46 [Journal] [PubMed]
Chacron MJ, Lindner B, Longtin A (2007) Threshold fatigue and information transfer. J Comput Neurosci 23:301-11 [Journal] [PubMed]
Channell P, Fuwape I, Neiman AB, Shilnikov AL (2009) Variability of bursting patterns in a neuron model in the presence of noise. J Comput Neurosci 27:527-42 [Journal] [PubMed]
   Reduced leech heart interneuron (Channell et al. 2009) [Model]
Delorme A (2003) Early Cortical Orientation Selectivity: How Fast Inhibition Decodes the Order of Spike Latencies Journal of Computational Neuroscience 16:357-365 [Journal] [PubMed]
Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-51 [Journal] [PubMed]
Diba K, Koch C, Segev I (2006) Spike propagation in dendrites with stochastic ion channels. J Comput Neurosci 20:77-84 [Journal] [PubMed]
   Spike propagation in dendrites with stochastic ion channels (Diba et al. 2006) [Model]
Dimitrov AG, Gedeon T (2006) Effects of stimulus transformations on estimates of sensory neuron selectivity. J Comput Neurosci 20:265-83 [Journal] [PubMed]
Eggert J, van Hemmen JL (2001) Modeling neuronal assemblies: theory and implementation. Neural Comput 13:1923-74 [Journal] [PubMed]
Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811-29 [PubMed]
Gutkin B, Ermentrout GB, Rudolph M (2003) Spike generating dynamics and the conditions for spike-time precision in cortical neurons. J Comput Neurosci 15:91-103 [Journal] [PubMed]
Guyonneau R, VanRullen R, Thorpe SJ (2005) Neurons tune to the earliest spikes through STDP. Neural Comput 17:859-79 [Journal] [PubMed]
Haas JS, Dorval AD, White JA (2007) Contributions of Ih to feature selectivity in layer II stellate cells of the entorhinal cortex. J Comput Neurosci 22:161-71 [Journal] [PubMed]
Higley MJ, Contreras D (2006) Balanced excitation and inhibition determine spike timing during frequency adaptation. J Neurosci 26:448-57 [Journal] [PubMed]
Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography
Holt GR, Koch C (1997) Shunting inhibition does not have a divisive effect on firing rates. Neural Comput 9:1001-13 [PubMed]
Hong S, Ratté S, Prescott SA, De Schutter E (2012) Single neuron firing properties impact correlation-based population coding. J Neurosci 32:1413-28 [Journal] [PubMed]
   A model for how correlation depends on the neuronal excitability type (Hong et al. 2012) [Model]
Houweling AR, Modi RH, Ganter P, Fellous JM, Sejnowski TJ (2001) Models of frequency preferences of prefrontal cortical neurons. Neurocomputing 38:231-238
Izhikevich EM (2006) Polychronization: computation with spikes. Neural Comput 18:245-82 [Journal] [PubMed]
   Polychronization: Computation With Spikes (Izhikevich 2005) [Model]
Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J Physiol 564:145-60 [Journal] [PubMed]
Jaffe DB, Brenner R (2018) A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 119:1506-1520 [Journal] [PubMed]
   Paradoxical effect of fAHP amplitude on gain in dentate gyrus granule cells (Jaffe & Brenner 2018) [Model]
Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82:3268-85 [Journal] [PubMed]
Jolivet R, Gerstner W (2004) Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. J Physiol Paris 98:442-51 [Journal] [PubMed]
Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169:417-24 [Journal] [PubMed]
   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]
Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92:959-76 [Journal] [PubMed]
   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]
Jolivet R, Rauch A, Lüscher HR, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21:35-49 [Journal] [PubMed]
   Spike Response Model simulator (Jolivet et al. 2004, 2006, 2008) [Model]
Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state. J Comput Neurosci 14:91-110 [PubMed]
Kilinc D, Demir A (2017) Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques. IEEE Trans Biomed Circuits Syst 11:958-974 [Journal] [PubMed]
   A neuronal circuit simulator for non Monte Carlo analysis of neuronal noise (Kilinc & Demir 2018) [Model]
Kitano K, Fukai T (2007) Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies. J Comput Neurosci 23:237-50 [Journal] [PubMed]
Klaus A, Planert H, Hjorth J, Berke JD, Silberberg G, Kotaleski JH (2011) Striatal fast-spiking interneurons: from firing patterns to postsynaptic impact Front. Syst. Neurosci. [Journal]
   Firing patterns in stuttering fast-spiking interneurons (Klaus et al. 2011) [Model]
Köndgen H, Geisler C, Fusi S, Wang XJ, Lüscher HR, Giugliano M (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex 18:2086-97 [Journal] [PubMed]
   Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008) [Model]
Kosmidis EK, Pakdaman K (2003) An analysis of the reliability phenomenon in the FitzHugh-Nagumo model. J Comput Neurosci 14:5-22 [PubMed]
Kretzberg J, Egelhaaf M, Warzecha AK (2001) Membrane potential fluctuations determine the precision of spike timing and synchronous activity: a model study. J Comput Neurosci 10:79-97 [PubMed]
Kretzberg J, Warzecha AK, Egelhaaf M (2001) Neural coding with graded membrane potential changes and spikes. J Comput Neurosci 11:153-64 [PubMed]
Larkum ME, Launey T, Dityatev A, Lüscher HR (1998) Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. J Neurophysiol 80:924-35 [Journal] [PubMed]
Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 4:e1000180 [Journal] [PubMed]
   Reward modulated STDP (Legenstein et al. 2008) [Model]
Leon PS, Vanzetta I, Masson GS, Perrinet LU (2012) Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception. J Neurophysiol 107:3217-26 [Journal] [PubMed]
   Motion Clouds: Synthesis of random textures for motion perception (Leon et al. 2012) [Model]
Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol 65:545-91 [PubMed]
Lin Z, Lin Y, Schorge S, Pan JQ, Beierlein M, Lipscombe D (1999) Alternative splicing of a short cassette exon in alpha1B generates functionally distinct N-type calcium channels in central and peripheral neurons. J Neurosci 19:5322-31 [PubMed]
Linaro D, Storace M, Giugliano M (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Comput Biol 7:e1001102 [Journal] [PubMed]
   Accurate and fast simulation of channel noise in conductance-based model neurons (Linaro et al 2011) [Model]
Lindsay KA, Ogden JM, Rosenberg JR (2002) An investigation into the influence of boundary condition specification in finite difference methods on the behaviour of passive and active neuronal models. Prog Biophys Mol Biol 78:3-43 [PubMed]
Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15:1427-39 [PubMed]
   Spike Initiation in Neocortical Pyramidal Neurons (Mainen et al 1995) [Model]
Marre O, Yger P, Davison AP, Frégnac Y (2009) Reliable recall of spontaneous activity patterns in cortical networks. J Neurosci 29:14596-606 [Journal] [PubMed]
Marsálek P, Koch C, Maunsell J (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A 94:735-40 [PubMed]
Masuda N (2005) Simultaneous Rate-Synchrony Codes in Populations of Spiking Neurons Neural Comput 18:45-59
Masuda N, Aihara K (2003) Duality of rate coding and temporal coding in multilayered feedforward networks. Neural Comput 15:103-25 [Journal] [PubMed]
Muller E, Buesing L, Schemmel J, Meier K (2007) Spike-frequency adapting neural ensembles: beyond mean adaptation and renewal theories. Neural Comput 19:2958-3010 [Journal] [PubMed]
Ozer M, Graham LJ, Erkaymaz O, Uzuntarla M (2007) Impact of synaptic noise and conductance state on spontaneous cortical firing. Neuroreport 18:1371-4 [Journal] [PubMed]
Paninski L (2006) The most likely voltage path and large deviations approximations for integrate-and-fire neurons. J Comput Neurosci 21:71-87 [Journal] [PubMed]
Podlaski WF, Seeholzer A, Groschner LN, Miesenböck G, Ranjan R, Vogels TP (2017) Mapping the function of neuronal ion channels in model and experiment. Elife [Journal] [PubMed]
Powers RK, Dai Y, Bell BM, Percival DB, Binder MD (2005) Contributions of the input signal and prior activation history to the discharge behaviour of rat motoneurones. J Physiol 562:707-24 [Journal] [PubMed]
   Contibutions of input and history to motoneuron output (Powers et al 2005) [Model]
Prescott SA, Ratté S, De Koninck Y, Sejnowski TJ (2006) Nonlinear interaction between shunting and adaptation controls a switch between integration and coincidence detection in pyramidal neurons. J Neurosci 26:9084-97 [Journal] [PubMed]
Rowat P (2007) Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing. Neural Comput 19:1215-50 [Journal] [PubMed]
Rowat PF, Elson RC (2004) State-dependent effects of Na channel noise on neuronal burst generation. J Comput Neurosci 16:87-112 [Journal] [PubMed]
Rudolph M, Destexhe A (2003) Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J Comput Neurosci 14:239-51 [PubMed]
Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280-90 [Journal] [PubMed]
   Code to calc. spike-trig. ave (STA) conduct. from Vm (Pospischil et al. 2007, Rudolph et al. 2007) [Model]
Savtchenko LP, Gogan P, Tyc-Dumont S (2001) Dendritic spatial flicker of local membrane potential due to channel noise and probabilistic firing of hippocampal neurons in culture. Neurosci Res 41:161-83 [PubMed]
Schneider G, Havenith MN, Nikolic D (2006) Spatiotemporal structure in large neuronal networks detected from cross-correlation. Neural Comput 18:2387-413 [Journal] [PubMed]
Sharpee T, Rust NC, Bialek W (2004) Analyzing neural responses to natural signals: maximally informative dimensions. Neural Comput 16:223-50 [Journal] [PubMed]
Shlens J, Kennel MB, Abarbanel HD, Chichilnisky EJ (2007) Estimating information rates with confidence intervals in neural spike trains. Neural Comput 19:1683-719 [Journal] [PubMed]
Singh C, Levy WB (2017) A consensus layer V pyramidal neuron can sustain interpulse-interval coding. PLoS One 12:e0180839 [Journal] [PubMed]
   Stochastic layer V pyramidal neuron: interpulse interval coding and noise (Singh & Levy 2017) [Model]
Sohal VS, Huguenard JR (2005) Inhibitory coupling specifically generates emergent gamma oscillations in diverse cell types. Proc Natl Acad Sci U S A 102:18638-43 [Journal] [PubMed]
Sripati AP, Johnson KO (2006) Dynamic gain changes during attentional modulation. Neural Comput 18:1847-67 [Journal] [PubMed]
Stiefel KM, Gutkin BS, Sejnowski TJ (2009) The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci 26:289-301 [Journal] [PubMed]
Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019-25 [PubMed]
Tang AC, Bartels AM, Sejnowski TJ (1997) Effects of cholinergic modulation on responses of neocortical neurons to fluctuating input. Cereb Cortex 7:502-9 [PubMed]
Tang AC, Wolfe J, Bartels AM (1999) Cholinergic modulation of spike timing and spike rate Neurocomputing 26-27:293-298
Teka W, Marinov TM, Santamaria F (2014) Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput Biol 10:e1003526 [Journal] [PubMed]
   Fractional leaky integrate-and-fire model (Teka et al. 2014) [Model]
Thiel A, Greschner M, Ammermüller J (2006) The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. J Comput Neurosci 21:131-51 [Journal] [PubMed]
Tiesinga PH, Fellous JM, José JV, Sejnowski TJ (2002) Information transfer in entrained cortical neurons. Network 13:41-66 [PubMed]
Tiesinga PH, José JV (2000) Synchronous clusters in a noisy inhibitory neural network. J Comput Neurosci 9:49-65 [PubMed]
Tiesinga PH, Toups JV (2005) The possible role of spike patterns in cortical information processing. J Comput Neurosci 18:275-86 [Journal] [PubMed]
Tonnelier A, Belmabrouk H, Martinez D (2007) Event-driven simulations of nonlinear integrate-and-fire neurons. Neural Comput 19:3226-38 [Journal] [PubMed]
Tsutsui H, Oka Y (2002) Slow removal of Na(+) channel inactivation underlies the temporal filtering property in the teleost thalamic neurons. J Physiol 539:743-53 [PubMed]
   Novel Na current with slow de-inactivation (Tsutsui, Oka 2002) [Model]
Tucker TR, Katz LC (2003) Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex. J Neurophysiol 89:501-12 [Journal] [PubMed]
Van Rossum MC (2001) The transient precision of integrate and fire neurons: effect of background activity and noise. J Comput Neurosci 10:303-11 [Journal] [PubMed]
Veredas FJ, Vico FJ, Alonso JM (2005) Factors determining the precision of the correlated firing generated by a monosynaptic connection in the cat visual pathway. J Physiol 567:1057-78 [Journal] [PubMed]
Wang HP, Spencer D, Fellous JM, Sejnowski TJ (2010) Synchrony of thalamocortical inputs maximizes cortical reliability. Science 328:106-9 [Journal] [PubMed]
Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28:7260-72 [Journal] [PubMed]
   AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008) [Model]
Zeldenrust F, Chameau PJ, Wadman WJ (2013) Reliability of spike and burst firing in thalamocortical relay cells. J Comput Neurosci 35:317-34 [Journal] [PubMed]
   Reliability of Morris-Lecar neurons with added T, h, and AHP currents (Zeldenrust et al. 2013) [Model]
(96 refs)