Citation Relationships

Legends: Link to a Model Reference cited by multiple papers


Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123-31 [PubMed]

References and models cited by this paper

References and models that cite this paper

Baranauskas G, Martina M (2006) Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons. J Neurosci 26:671-84 [Journal] [PubMed]
   Sodium currents activate without a delay (Baranauskas and Martina 2006) [Model]
Broicher T, Kanyshkova T, Landgraf P, Rankovic V, Meuth P, Meuth SG, Pape HC, Budde T (2007) Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons. Mol Cell Neurosci 36:132-45 [Journal] [PubMed]
Gunn BG, Cox CD, Chen Y, Frotscher M, Gall CM, Baram TZ, Lynch G (2017) The Endogenous Stress Hormone CRH Modulates Excitatory Transmission and Network Physiology in Hippocampus. Cereb Cortex 27:4182-4198 [Journal] [PubMed]
   CRH modulates excitatory transmission and network physiology in hippocampus (Gunn et al. 2017) [Model]
Gurkiewicz M, Korngreen A (2007) A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm. PLoS Comput Biol 3:e169 [Journal] [PubMed]
   Ion channel modeling with whole cell and a genetic algorithm (Gurkiewicz and Korngreen 2007) [Model]
Kapur A, Pearce RA, Lytton WW, Haberly LB (1997) GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J Neurophysiol 78:2531-45 [Journal] [PubMed]
Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 525 Pt 3:621-39 [PubMed]
   Pyramidal Neuron Deep: K+ kinetics (Korngreen, Sakmann 2000) [Model]
Masurkar AV, Chen WR (2011) Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience 192:247-62 [Journal] [PubMed]
   Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011) [Model]
Masurkar AV, Chen WR (2011) Calcium currents of olfactory bulb juxtaglomerular cells: profile and multiple conductance plateau potential simulation. Neuroscience 192:231-46 [Journal] [PubMed]
   Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011) [Model]
Meuth SG, Bittner S, Meuth P, Simon OJ, Budde T, Wiendl H (2008) TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. J Biol Chem 283:14559-70 [Journal] [PubMed]
Podlaski WF, Seeholzer A, Groschner LN, Miesenböck G, Ranjan R, Vogels TP (2017) Mapping the function of neuronal ion channels in model and experiment. Elife [Journal] [PubMed]
Riedel T, Schmalzing G, Markwardt F (2007) Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated single-channel currents. Biophys J 93:846-58 [Journal] [PubMed]
   Kinetics of the P2X7 receptor as expressed in Xenopus oocytes (Riedel et al. 2007a,b) [Model]
Shu Y, Yu Y, Yang J, McCormick DA (2007) Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A 104:11453-8 [Journal] [PubMed]
   Selective control of cortical axonal spikes by a slowly inactivating K+ current (Shu et al. 2007) [Model]
Tsutsui H, Oka Y (2002) Slow removal of Na(+) channel inactivation underlies the temporal filtering property in the teleost thalamic neurons. J Physiol 539:743-53 [PubMed]
   Novel Na current with slow de-inactivation (Tsutsui, Oka 2002) [Model]
Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28:7260-72 [Journal] [PubMed]
   AP back-prop. explains threshold variability and rapid rise (McCormick et al. 2007, Yu et al. 2008) [Model]
Zsiros V, Aradi I, Maccaferri G (2007) Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus. J Physiol 578:527-44 [Journal] [PubMed]
(17 refs)