Citation Relationships

Legends: Link to a Model Reference cited by multiple papers

Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res 68:1501-26 [PubMed]

   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)

   Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004)

References and models cited by this paper

References and models that cite this paper

Adam DR, Smith JM, Akselrod S, Nyberg S, Powell AO, Cohen RJ (1984) Fluctuations in T-wave morphology and susceptibility to ventricular fibrillation. J Electrocardiol 17:209-18 [PubMed]
Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268:177-210 [Journal] [PubMed]
   Mammalian Ventricular Cell (Beeler and Reuter 1977) [Model]
Berman MF, Camardo JS, Robinson RB, Siegelbaum SA (1989) Single sodium channels from canine ventricular myocytes: voltage dependence and relative rates of activation and inactivation. J Physiol 415:503-31 [PubMed]
Bodewei R, Hering S, Lemke B, Rosenshtraukh LV, Undrovinas AI, Wollenberger A (1982) Characterization of the fast sodium current in isolated rat myocardial cells: simulation of the clamped membrane potential. J Physiol 325:301-15 [PubMed]
Brown AM, Lee KS, Powell T (1981) Sodium current in single rat heart muscle cells. J Physiol 318:479-500 [PubMed]
Chialvo DR, Michaels DC, Jalife J (1990) Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac Purkinje fibers. Circ Res 66:525-45 [PubMed]
Chiu SY (1977) Inactivation of sodium channels: second order kinetics in myelinated nerve. J Physiol 273:573-96 [PubMed]
Cleemann L, Morad M (1979) Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation. J Physiol 286:113-43 [PubMed]
Colatsky TJ (1980) Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres. J Physiol 305:215-34 [PubMed]
Coraboeuf E, Deroubaix E, Coulombe A (1979) Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol 236:H561-7 [Journal] [PubMed]
Delmar M, Glass L, Michaels DC, Jalife J (1989) Ionic basis and analytical solution of the wenckebach phenomenon in guinea pig ventricular myocytes. Circ Res 65:775-88 [PubMed]
Delmar M, Michaels DC, Jalife J (1989) Slow recovery of excitability and the Wenckebach phenomenon in the single guinea pig ventricular myocyte. Circ Res 65:761-74 [PubMed]
Dennis JE, Gay DM, Welsch RE (1981) An adaptive nonlinear leastsquares algorithm ACM Transactions On Mathematical Software 7:348-368
DiFrancesco D, Noble D (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci 307:353-98 [Journal] [PubMed]
   Cardiac action potentials and pacemaker activity of sinoatrial node (DiFrancesco & Noble 1985) [Model]
Drouhard JP, Roberge FA (1987) Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells. Comput Biomed Res 20:333-50 [PubMed]
Ebihara L, Johnson EA (1980) Fast sodium current in cardiac muscle. A quantitative description. Biophys J 32:779-90 [Journal] [PubMed]
Ebihara L, Shigeto N, Lieberman M, Johnson EA (1980) The initial inward current in spherical clusters of chick embryonic heart cells. J Gen Physiol 75:437-56 [PubMed]
Ebihara L, Shigeto N, Lieberman M, Johnson EA (1983) A note on the reactivation of the fast sodium current in spherical clusters of embryonic chick heart cells. Biophys J 42:191-4 [Journal] [PubMed]
Elharrar V, Surawicz B (1983) Cycle length effect on restitution ofaction potential duration in dog cardiac fibers Am J Physiol 244:H782-H792
Frame LH, Simson MB (1988) Oscillations of conduction, action potential duration, and refractoriness. A mechanism for spontaneous termination of reentrant tachycardias. Circulation 78:1277-87 [PubMed]
French RJ, Horn R (1983) Sodium channel gating: models, mimics, and modifiers. Annu Rev Biophys Bioeng 12:319-56 [Journal] [PubMed]
Gettes LS, Reuter H (1974) Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol 240:703-24 [PubMed]
Grant AO, Starmer CF (1987) Mechanisms of closure of cardiac sodium channels in rabbit ventricular myocytes: single-channel analysis. Circ Res 60:897-913 [PubMed]
Guevara MR, Alonso F, Jeandupeux D, Van_Ginneken ACG (1989) Alternans in periodically stimulated isolated ventricular myocytes: Experiment and model Cell to Cell Signalling: From Experments to Theoretical Models, Goldbeter A, ed. pp.551
Guevara MR, Jeandupeux D, Alonso F, Morissette N (1989) Wenckebach rhythms in isolated ventricular heart cells Singular Behavior and Nonlinear Dynamics, Pnevmatikos S:Bountis T:Pnevmatikos S, ed. pp.629
Haas HG, Kern R, Einwächter HM, Tarr M (1971) Kinetics of Na inactivation in frog atria. Pflugers Arch 323:141-57 [PubMed]
Hirano Y, Hiraoka M (1986) Changes in K+ currents induced by Ba2+ in guinea pig ventricular muscles. Am J Physiol 251:H24-33 [Journal] [PubMed]
Hoff HE, Nahum LH (1938) The supernormal period in the mammalian ventricle Am J Physiol 124:591-595
Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505-34 [PubMed]
Hume JR, Uehara A (1985) Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol 368:525-44 [PubMed]
Iijima T, Taira N (1987) Pinacidil increases the background potassium current in single ventricular cells. Eur J Pharmacol 141:139-41 [PubMed]
Isenberg G (1976) Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium currents. Pflugers Arch 365:99-106 [PubMed]
Isenberg G, Klockner U (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch 395:6-18
Isenberg G, Klöckner U (1982) Isolated bovine ventricular myocytes. Characterization of the action potential. Pflugers Arch 395:19-29 [PubMed]
Jalife J, Moe GK (1981) Excitation, conduction, and reflection of impulses in isolated bovine and serum cardiac purkinje fibers. Circ Res 49:233-47 [PubMed]
Kakei M, Yoshinaga M, Saito K, Tanaka H (1986) The potassium current activated by 2-nicotinamidoethyl nitrate (nicorandil) in single ventricular cells of guinea pigs. Proc R Soc Lond B Biol Sci 229:331-43 [Journal] [PubMed]
Kamp TJ, Sanguinetti MC, Miller RJ (1989) Voltage- and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202-791. Circ Res 64:338-51 [PubMed]
Kirsch GE, Brown AM (1989) Kinetic properties of single sodium channels in rat heart and rat brain. J Gen Physiol 93:85-99 [PubMed]
Kiyosue T, Arita M (1989) Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res 64:389-97 [PubMed]
Kunze DL, Lacerda AE, Wilson DL, Brown AM (1985) Cardiac Na currents and the inactivating, reopening, and waiting properties of single cardiac Na channels. J Gen Physiol 86:691-719 [PubMed]
Kurachi Y (1985) Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol 366:365-85 [PubMed]
Leblanc N, Hume JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248:372-6 [PubMed]
Lesh MD, Pring M, Spear JF (1989) Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study. Circ Res 65:1426-40 [PubMed]
Makielski JC, Sheets MF, Hanck DA, January CT, Fozzard HA (1987) Sodium current in voltage clamped internally perfused canine cardiac Purkinje cells. Biophys J 52:1-11 [Journal] [PubMed]
Matsuura H, Ehara T, Imoto Y (1987) An analysis of the delayed outward current in single ventricular cells of the guinea-pig. Pflugers Arch 410:596-603 [PubMed]
McAllister RE, Noble D, Tsien RW (1975) Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 251:1-59 [PubMed]
McDonald TF, Trautwein W (1978) The potassium current underlying delayed rectification in cat ventricular muscle. J Physiol 274:217-46 [PubMed]
Moore JW, Ramon F (1974) On numerical integration of the Hodgkin and Huxley equations for a membrane action potential. J Theor Biol 45:249-73 [PubMed]
Nilius B (1988) Calcium block of guinea-pig heart sodium channels with and without modification by the piperazinylindole DPI 201-106. J Physiol 399:537-58 [PubMed]
Patlak JB, Ortiz M (1985) Slow currents through single sodium channels of the adult rat heart. J Gen Physiol 86:89-104 [PubMed]
Quan W, Rudy Y (1990) Unidirectional block and reentry of cardiac excitation: a model study. Circ Res 66:367-82 [PubMed]
Robinson RB, Boyden PA, Hoffman BF, Hewett KW (1987) Electrical restitution process in dispersed canine cardiac Purkinje and ventricular cells. Am J Physiol 253:H1018-25 [Journal] [PubMed]
Rudy Y, Quan W (1989) The effects of the discrete cellular structureon propagation of excitation in cardiac tissue: A model study Cell Interactions and Gap Junctions, Sperelakis N:Cole W, ed. pp.123
Rudy Y, Quan WL (1987) A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue. Circ Res 61:815-23 [PubMed]
Rush S, Larsen H (1978) A practical algorithm for solving dynamic membrane equations. IEEE Trans Biomed Eng 25:389-92 [Journal] [PubMed]
Sakmann B, Trube G (1984) Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol 347:641-57 [PubMed]
Sakmann B, Trube G (1984) Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol 347:659-83 [PubMed]
Scanley BE, Hanck DA, Chay T, Fozzard HA (1990) Kinetic analysis of single sodium channels from canine cardiac Purkinje cells. J Gen Physiol 95:411-37 [PubMed]
Shah AK, Cohen IS, Datyner NB (1987) Background K+ current in isolated canine cardiac Purkinje myocytes. Biophys J 52:519-25 [Journal] [PubMed]
Shibasaki T (1987) Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol 387:227-50 [PubMed]
Spear JF, Moore EN (1974) The effect of changes in rate and rhythm on supernormal excitability in the isolated Purkinje system of the dog. A possible role in re-entrant arrhythmias. Circulation 50:1144-9 [PubMed]
Tseng GN, Robinson RB, Hoffman BF (1987) Passive properties and membrane currents of canine ventricular myocytes. J Gen Physiol 90:671-701 [PubMed]
Victorri B, Vinet A, Roberge FA, Drouhard JP (1985) Numerical integration in the reconstruction of cardiac action potentials using Hodgkin-Huxley-type models. Comput Biomed Res 18:10-23 [PubMed]
WEIDMANN S (1955) Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol 129:568-82 [PubMed]
Weidmann S (1970) Electrical constants of trabecular muscle from mammalian heart. J Physiol 210:1041-54 [PubMed]
Wenckebach KF (1899) Zur Analyse des unregel massingen Pulses: II. Uber den regelmassig intermittirenden Puls Z F Klin Med 37:475-488
Yue DT, Lawrence JH, Marban E (1989) Two molecular transitions influence cardiac sodium channel gating. Science 244:349-52 [PubMed]
Yue DT, Marban E (1988) A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflugers Arch 413:127-33 [PubMed]
Zilberter YI, Timin EN, Bendukidze ZA, Burnashev NA (1982) Patch-voltage-clamp method for measuring fast inward current in single rat heart muscle cells. Pflugers Arch 394:150-5 [PubMed]
Clancy CE, Kass RS (2004) Theoretical investigation of the neuronal Na+ channel SCN1A: abnormal gating and epilepsy. Biophys J 86:2606-14 [Journal] [PubMed]
   Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004) [Model]
Fox JJ, McHarg JL, Gilmour RF (2002) Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 282:H516-30 [Journal] [PubMed]
   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007) [Model]
Iyer V, Mazhari R, Winslow RL (2004) A computational model of the human left-ventricular epicardial myocyte. Biophys J 87:1507-25 [Journal] [PubMed]
Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071-96 [PubMed]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 74:1097-113 [PubMed]
   Ventricular cell model (Luo Rudy dynamic model) (Luo Rudy 1994) used in (Wang et al 2006) (XPP) [Model]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie LH, Yang MJ, Chen PS, Restrepo JG, Karma A, Garfinkel A, Qu Z, Weiss JN (2008) A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys J 94:392-410 [Journal] [PubMed]
Puglisi JL, Bers DM (2001) LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. Am J Physiol Cell Physiol 281:C2049-60 [Journal] [PubMed]
   A cardiac cell simulator (Puglisi and Bers 2001), applied to the QT interval (Busjahn et al 2004) [Model]
Wu SN (2004) Simulations of the cardiac action potential based on the Hodgkin-Huxley kinetics with the use of Microsoft Excel spreadsheets. Chin J Physiol 47:15-22 [PubMed]
   Cardiac action potential based on Luo-Rudy phase 1 model (Luo and Rudy 1991), (Wu 2004) [Model]
Zeng J, Laurita KR, Rosenbaum DS, Rudy Y (1995) Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 77:140-52 [PubMed]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
Zeng J, Rudy Y (1995) Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J 68:949-64 [Journal] [PubMed]
   Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++) [Model]
Zhu ZI, Clancy CE (2007) L-type Ca2+ channel mutations and T-wave alternans: a model study. Am J Physiol Heart Circ Physiol 293:H3480-9 [Journal] [PubMed]
   Ionic basis of alternans and Timothy Syndrome (Fox et al. 2002), (Zhu and Clancy 2007) [Model]
(82 refs)